期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于冗余信息压缩的深度学习对抗样本防御方案 被引量:1
1
作者 许笑 陈奕君 +3 位作者 冯诗羽 谢理哲 曹玖新 胡轶宁 《网络空间安全》 2020年第8期11-16,共6页
近年来,研究者们发现基于神经网络的深度学习系统存在安全隐患,添加了细微扰动的输入样本,可能会使模型失效,这类样本被称为对抗样本。文章提出了冗余信息压缩方案,可以有效地抵御对抗样本攻击。该方案将图像随机压缩与多尺寸缩放集成... 近年来,研究者们发现基于神经网络的深度学习系统存在安全隐患,添加了细微扰动的输入样本,可能会使模型失效,这类样本被称为对抗样本。文章提出了冗余信息压缩方案,可以有效地抵御对抗样本攻击。该方案将图像随机压缩与多尺寸缩放集成策略相结合,对图像信息进行选择性压缩处理,有效减少冗余信息,消除了附加扰动。方案的优势体现在三个方面:(1)针对预处理环节,易于实施;(2)实现了随机化和集成策略;(3)与其他对抗样本防御方法兼容。实验结果表明,面对多种先进的对抗样本攻击,与其他预处理防御方案相比,冗余信息压缩防御方案在多个基础模型上都有更出色的防御表现,同时对模型在干净图像上的分类能力影响较小。 展开更多
关键词 对抗样本防御 神经网络安全 图像信息压缩
下载PDF
k-NN Based Bypass Entropy and Mutual Information Estimation for Incremental Remote-Sensing Image Compressibility Evaluation 被引量:2
2
作者 Xijia Liu Xiaoming Tao +1 位作者 Yiping Duan Ning Ge 《China Communications》 SCIE CSCD 2017年第8期54-62,共9页
Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still... Incremental image compression techniques using priori information are of significance to deal with the explosively increasing remote-sensing image data. However, the potential benefi ts of priori information are still to be evaluated quantitatively for effi cient compression scheme designing. In this paper, we present a k-nearest neighbor(k-NN) based bypass image entropy estimation scheme, together with the corresponding mutual information estimation method. Firstly, we apply the k-NN entropy estimation theory to split image blocks, describing block-wise intra-frame spatial correlation while avoiding the curse of dimensionality. Secondly, we propose the corresponding mutual information estimator based on feature-based image calibration and straight-forward correlation enhancement. The estimator is designed to evaluate the compression performance gain of using priori information. Numerical results on natural and remote-sensing images show that the proposed scheme obtains an estimation accuracy gain by 10% compared with conventional image entropy estimators. Furthermore, experimental results demonstrate both the effectiveness of the proposed mutual information evaluation scheme, and the quantitative incremental compressibility by using the priori remote-sensing frames. 展开更多
关键词 remote-sensing incremental image compression entropy mutual information
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部