期刊文献+
共找到549篇文章
< 1 2 28 >
每页显示 20 50 100
轻量级重参数化的遥感图像超分辨率重建网络设计 被引量:1
1
作者 易见兵 陈俊宽 +2 位作者 曹锋 李俊 谢唯嘉 《光学精密工程》 EI CAS CSCD 北大核心 2024年第2期268-285,共18页
针对当前基于深度学习的遥感图像超分辨率重建模型部署时对硬件要求较高,本文设计了一种轻量级基于重参数化的残差特征遥感图像超分辨率重建网络。首先,采用重参数化方法设计了一种残差局部特征模块,以有效地提取图像局部特征;同时考虑... 针对当前基于深度学习的遥感图像超分辨率重建模型部署时对硬件要求较高,本文设计了一种轻量级基于重参数化的残差特征遥感图像超分辨率重建网络。首先,采用重参数化方法设计了一种残差局部特征模块,以有效地提取图像局部特征;同时考虑到图像内部出现的相似特征,设计了一个轻量级的全局上下文模块对图像的相似特征进行关联以提升网络的特征表达能力,并通过调整该模块的通道压缩倍数来减少模型的参数量和改善模型的性能;最后,在上采样模块前使用多层特征融合模块聚合所有的深度特征,以产生更全面的特征表示。在UC Merced遥感数据集上进行测试,该算法在遥感图像3倍超分辨率下的参数量为539 K,峰值信噪比为30.01 dB,结构相似性为0.8449,模型的推理时间为0.010 s;而HSENet算法的参数量为5470 K,峰值信噪比为30.00 dB,结构相似性为0.8420,模型的推理时间为0.059 s。实验结果表明,该算法相比HSENet算法,参数量更少,运行速度较快,且峰值信噪比与结构相似性也有一定的提高。在DIV2K自然图像数据集上进行测试,该算法的峰值信噪比和结构相似性相比其他算法也有一定的优势,表明该算法的泛化能力较强。 展开更多
关键词 分辨 遥感图像 全局上下文 重参数化 残差网络
下载PDF
多耦合反馈网络的图像融合和超分辨率方法
2
作者 王蓉 端木春江 《计算机工程与应用》 CSCD 北大核心 2024年第5期210-220,共11页
人们在日常生活中往往需要得到高动态范围和高分辨率的图像。但由于技术设备的限制,高动态范围的图像往往通过低动态范围图像的多曝光融合(MEF)而获得,高分辨率图像往往通过低分辨率图像的超分辨率(SR)而获得。MEF和SR通常被作为两个独... 人们在日常生活中往往需要得到高动态范围和高分辨率的图像。但由于技术设备的限制,高动态范围的图像往往通过低动态范围图像的多曝光融合(MEF)而获得,高分辨率图像往往通过低分辨率图像的超分辨率(SR)而获得。MEF和SR通常被作为两个独立的内容进行研究。为了解决当前模型不能同时实现高动态范围和高分辨率的问题,通过对现有方法进行研究,提出了一种基于多耦合反馈网络MCF-Net及其方法。模型包括:N个子网和输出模块;在方法中,将N张下采样图片I_(lr)^(i),I_(lr)^(m),I_(lr)^(-i)分别输入至N个子网,提取的低分辨率特征F_(lr)^(i),F_(lr)^(m),F_(lr)^(-i);根据低分辨率特征F_(lr)^(i),F_(lr)^(m),F_(lr)^(-i)提取对应图像的超分辨率特征G_(0)^(i),G_(0)^(m),G_(0)^(-i);得到融合高分辨率特征G_(t)^(i),G_(t)^(m),G_(t)^(-i)并输入至下个MCFB中,直至第T个MCFB得到融合高分辨率特征G_(T)^(i),G_(T)^(m),G_(T)^(-i);获取对应的融合超分辨率图像I_(t)^(i),I_(t)^(m),I_(t)^(-i);融合N个子网中第T个重建模块REC输出的I_(T)^(i),I_(T)^(m),I_(T)^(-i)得到高动态范围、超分辨率图像I_(out)。在SICE数据集上实验并验证了性能,与现有的33种方法进行对比,结果显示以下各评价指标都有明显的提高,其中结构相似性(SSIM)达到0.833 2,峰值信噪比(PSNR)达到22.07 dB,多曝光融合相似性(MEF-SSIM)达到0.937 8。 展开更多
关键词 图像多曝光融合 图像分辨 卷积神经网络 计算机视觉 深度学习
下载PDF
金字塔方差池化网络的图像超分辨率重建
3
作者 彭晏飞 李泳欣 +1 位作者 孟欣 崔芸 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1380-1390,共11页
为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域... 为减少高频信息丢失对图像重建造成的影响,进一步增强对特征信息的挖掘,以金字塔方差池化模块为核心构建了一个生成网络。首先,该网络利用不同级别的方差池化挖掘低分辨率图像蕴含的特征信息,并结合金字塔结构获取不同尺度与不同子区域的上下文信息,从而进一步丰富特征信息量;然后,利用密集连接结构增强特征信息之间的关联性,以提高网络的表达能力;最后,引入组归一化操作来加强网络的收敛性。实验结果表明,该模型与其他方法在Set5、Set14、DIV2K100公开测试集上进行比较,在放大倍数因子为4时,峰值信噪比平均提高了0.509 dB,结构相似性平均提高了0.016。所提模型不仅在峰值信噪比和结构相似性上有一定的提高,其重建图像在视觉效果上也拥有更多的真实细节。 展开更多
关键词 图像分辨 生成对抗网络 方差池化 密集连接
下载PDF
结合非对称卷积与特征蒸馏的图像超分辨率重建网络
4
作者 朱磊 冯达 +2 位作者 朱奇伟 赵涵 王倩倩 《西安工程大学学报》 CAS 2024年第2期93-100,共8页
为了进一步提高单幅图像超分辨率(single image super-resolution,SISR)轻量化网络的图像重建效果,基于轻量化网络RFDN,提出一种结合非对称卷积与特征蒸馏的图像超分辨率重建网络(asymmetric convolution distillation network,ACDN)。... 为了进一步提高单幅图像超分辨率(single image super-resolution,SISR)轻量化网络的图像重建效果,基于轻量化网络RFDN,提出一种结合非对称卷积与特征蒸馏的图像超分辨率重建网络(asymmetric convolution distillation network,ACDN)。首先利用非对称卷积构建特征提取模块,在残差块中并联2个不同卷积核的非对称卷积,增强网络对特征的提取能力;其次利用均衡注意力机制与非对称卷积改进特征蒸馏模块,强化网络对高频信息的获取;最后在重建模块中加入均衡注意力机制进一步提高网络的最终重建性能。实验结果表明:与RLFN、SMSR等先进轻量化网络相比,提出的ACDN网络能在5个标准数据集上重建出纹理细节更丰富的高质量图像,重建图像的峰值信噪比和结构相似性指标均有提升,并在网络模型的参数量和性能上达到了更好的平衡。 展开更多
关键词 图像分辨 特征蒸馏 非对称卷积 注意力机制 RFDN网络
下载PDF
基于对比学习的深度残差网络图像超分辨率方法
5
作者 陈亚瑞 徐肖阳 《天津科技大学学报》 CAS 2024年第3期72-80,共9页
传统的基于对比学习的图像超分辨率方法,一般将原始图像作为正样本,将退化图像或其他类图像作为负样本,存在对纹理细节恢复差的问题。本文提出基于对比学习的深度残差网络图像超分辨率(depth residual image super-resolution based on ... 传统的基于对比学习的图像超分辨率方法,一般将原始图像作为正样本,将退化图像或其他类图像作为负样本,存在对纹理细节恢复差的问题。本文提出基于对比学习的深度残差网络图像超分辨率(depth residual image super-resolution based on contrast learning,CEDSR)方法,针对残差超分辨率模型,采用对高分辨率图像锐化后的图像作为正样本,对高分辨率图像轻微模糊的图像作为负样本,利用正负样本下的对比损失提升对纹理细节的恢复增强。增强锐化后的正样本图像携带更丰富的纹理信息,基于不同函数生成的模糊负样本图像刻画了纹理模糊特征,正负样本构建的对比损失有利于图像超分辨率图像对纹理细节的恢复。本文模型在4个标准数据集DIV2K、Set14、BSDS100和Urban100上与经典算法进行实验对比,定性和定量实验结果均表明本文模型可以获得效果更好的超分辨率图像。 展开更多
关键词 图像分辨 对比学习 残差网络
下载PDF
用于单图像超分辨率的全局特征高效融合网络
6
作者 张玉波 田康 徐磊 《化工自动化及仪表》 CAS 2024年第2期207-214,300,共9页
现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅... 现有图像超分辨率网络中普遍存在对层间特征利用水平较低的现象,使得在图像重建过程中有细节特征丢失,最终处理结果纹理模糊、图像质量欠佳。为此提出一种用于图像超分辨率的全局特征高效融合网络模型。主体使用对称卷积神经网络实现浅层特征的逐级提取,并结合Transformer完成浅层与深层特征的融合利用。设计的对称自指导残差模块可以在浅层网络实现不同层间特征更具表达性的融合,同时提升网络的特征提取能力;特征互导融合模块可以增强网络对浅层特征与深层特征的融合能力,促进更多的特征信息参与到细图像重建过程。在Set5、Set14、BSD100和Urban100数据集上同近年来的经典网络(HR、CARN、IMDN、MADNet、LBNet)进行性能对比,实验结果表明:所提网络模型在峰值信噪比上有所提升,并在视觉直观对比中取得了较好的图像超分辨率效果,可改善超分辨率图像质量欠佳的问题。 展开更多
关键词 图像分辨 全局特征高效融合网络模型 对称自指导残差模块 特征互导融合模块 深度学习
下载PDF
基于Transformer-CNN的轻量级图像超分辨率重建网络 被引量:3
7
作者 陈豪 夏振平 +2 位作者 程成 林李兴 张博文 《计算机应用》 CSCD 北大核心 2024年第1期292-299,共8页
针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的... 针对现有超分辨率重建网络具有较高的计算复杂度和存在大量内存消耗的问题,提出了一种基于Transformer-CNN的轻量级图像超分辨率重建网络,使超分辨率重建网络更适合应用于移动平台等嵌入式终端。首先,提出了一个基于Transformer-CNN的混合模块,从而增强网络捕获局部−全局深度特征的能力;其次,提出了一个改进的倒置残差块来特别关注高频区域的特征,以提升特征提取能力和减少推理时间;最后,在探索激活函数的最佳选择后,采用GELU(Gaussian Error Linear Unit)激活函数来进一步提高网络性能。实验结果表明,所提网络可以在图像超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集Urban100上4倍超分辨率的推理速度达到91 frame/s,比优秀网络SwinIR(Image Restoration using Swin transformer)快11倍,表明所提网络能够高效地重建图像的纹理和细节,并减少大量的推理时间。 展开更多
关键词 图像分辨 深度学习 TRANSFORMER 卷积神经网络 轻量级
下载PDF
适用于图像超分辨率的多路径融合增强网络 被引量:1
8
作者 沈俊晖 薛丽霞 +1 位作者 汪荣贵 杨娟 《微电子学与计算机》 2024年第3期59-70,共12页
卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解... 卷积神经网络(Convolutional Neural Network,CNN)在单幅图像的超分辨率重建方面表现出了非常强大的能力,相比传统方法有着明显的改进。然而,尽管这些方法非常成功,但是由于需要大量的计算资源,直接应用于一些边缘设备并不现实。为了解决该问题,设计了一种轻量级的图像超分辨率重建网络——多路径融合增强网络(Multi-path Fusion Enhancement Network,MFEN)。具体来说,提出了一个新颖的融合注意力增强模块(Fusion Attention Enhancement Block,FAEB)作为多路径融合增强网络的主要构建模块。融合注意力增强模块由一条主干分支和两条层级分支构成:主干分支由堆叠的增强像素注意力模块组成,负责对特征图实现深度特征学习;层级分支则负责提取并融合不同大小感受野的特征图,从而实现多尺度特征学习。层级分支的融合方式则是以相邻的增强像素注意力模块输出为分支输入,通过自适应注意力模块(Self-Adaptive Attention Module,SAAM)来动态地增强不同大小感受野特征的融合程度,进一步补全特征信息,从而实现更全面、更精准的特征学习。大量实验表明,该多路径融合增强网络在基准测试集上具有更高的准确性。 展开更多
关键词 多路径融合增强网络 轻量化图像分辨率重建 多尺度特征融合 自适应注意力 卷积神经网络
下载PDF
基于深度残差神经网络的红外图像超分辨率重构算法 被引量:1
9
作者 白皓 白廷柱 《红外技术》 CSCD 北大核心 2024年第2期176-182,共7页
提出了一种基于深度残差神经网络的红外灰度图像超分辨率重构算法。首先使用残差卷积模块增加网络深度提高了网络的学习能力,使得卷积层在学习过程中能够利用到更多的邻域信息对于复杂场景有更好的学习能力。然后使用跳跃连接方式增加... 提出了一种基于深度残差神经网络的红外灰度图像超分辨率重构算法。首先使用残差卷积模块增加网络深度提高了网络的学习能力,使得卷积层在学习过程中能够利用到更多的邻域信息对于复杂场景有更好的学习能力。然后使用跳跃连接方式增加高频信息传输以实现对于图像细节的增强。实验结果表明,该网络能够有效地丰富重构图像的细节,重构图像中的目标轮廓有明显改善。 展开更多
关键词 红外图像 深度学习 分辨率算法 残差网络
下载PDF
基于生成对抗网络的轻量级图像盲超分辨率网络 被引量:1
10
作者 李若琦 苍岩 《应用科技》 CAS 2024年第2期112-119,共8页
针对图像盲超分辨率网络计算参数多、模型庞大的问题,对快速且节省内存的轻量级图像非盲超分辨率网络(fast and memory-efficient image super resulotion network,FMEN)进行改进,提出了一种轻量级的快速且节省内存的图像盲超分辨率网络... 针对图像盲超分辨率网络计算参数多、模型庞大的问题,对快速且节省内存的轻量级图像非盲超分辨率网络(fast and memory-efficient image super resulotion network,FMEN)进行改进,提出了一种轻量级的快速且节省内存的图像盲超分辨率网络(fast and memory-efficient image blind super resulotion network,FMEBN)。首先,通过图像退化模块模拟部分真实世界退化空间,使用退化预测模块预测低分辨率(low resolution,LR)图像的退化参数;然后,为能有效利用退化先验信息指导并约束网络进行重建,使用动态卷积对原网络特征提取、重建模块、高频注意力块(high frequency attention block,HFAB)结构进行改进;最后,使用生成对抗网络(generative adversarial network,GAN)对FMEN训练策略与损失函数进行优化,减小真实数据与生成数据的差异,生成更加真实、清晰的纹理、轮廓。实验结果表明,在合成图像数据集和真实图像数据集RealWorld-38上,该算法有较好的重建精度与视觉效果,模型大小12 MB,可以满足图像盲超分辨率网络的轻量级需求。 展开更多
关键词 图像分辨 生成对抗网络 轻量级网络 图像退化 动态卷积 分辨 分辨
下载PDF
低分辨率随机遮挡人脸图像的超分辨率修复
11
作者 任坤 李峥瑱 +2 位作者 桂源泽 范春奇 栾衡 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3343-3352,共10页
针对低分辨率随机遮挡人脸图像,该文提出一种端到端的4倍超分辨率修复生成对抗网络(SRIGAN)。SRIGAN生成网络由编码器、特征补偿子网络和含有金字塔注意力模块的解码器构成;判别网络为改进的Patch判别网络。该网络通过特征补偿子网络和... 针对低分辨率随机遮挡人脸图像,该文提出一种端到端的4倍超分辨率修复生成对抗网络(SRIGAN)。SRIGAN生成网络由编码器、特征补偿子网络和含有金字塔注意力模块的解码器构成;判别网络为改进的Patch判别网络。该网络通过特征补偿子网络和两阶段训练策略有效学习遮挡区域的缺失特征,通过在解码器中引入金字塔注意力模块和多尺度重建损失增强信息重构,从而实现低分辨率随机遮挡图像与4倍高分辨率完整图像的映射。同时,通过损失函数设计和改进Patch判别网络,确保网络训练的稳定性,提升生成网络性能。对比实验和模块验证实验验证了该算法的有效性。 展开更多
关键词 图像修复 分辨率重建 生成对抗网络 金字塔注意力
下载PDF
基于注意力机制的残差特征聚合网络超分辨率图像重建研究
12
作者 孙阳 丁建伟 +2 位作者 张琪 魏慧雯 田博文 《计算机科学》 CSCD 北大核心 2024年第S01期441-446,共6页
针对单图像超分辨率算法级联残差块的输出特征仅在局部作用的问题,提出了一种结合注意力机制的残差特征聚合网络。该网络通过跳跃连接将各残差块输出不同层次的特征聚合到残差组的尾部,实现特征的充分提取与复用,扩大网络的感受野并增... 针对单图像超分辨率算法级联残差块的输出特征仅在局部作用的问题,提出了一种结合注意力机制的残差特征聚合网络。该网络通过跳跃连接将各残差块输出不同层次的特征聚合到残差组的尾部,实现特征的充分提取与复用,扩大网络的感受野并增强特征的表达能力,使得不同层次的特征图更充分地参与到图像重建中。同时,为增强特征信息空间上的相关性,引入增强空间注意力机制以改善残差块的性能。大量实验表明,此模型可以获得良好的超分辨率性能。在×4倍SR任务中与RCAN,SAN和HAN等主流方法相比,在5个基准测试集上取得的峰值信噪比平均提升0.07 dB,0.06 dB,0.006 dB,结构相似度平均提升0.0012,0.0011,0.0008,重建图像质量明显提高,细节更加丰富,充分说明了所提方法的有效性与先进性。 展开更多
关键词 图像分辨率重建 深度学习 注意力机制 特征聚合 卷积神经网络
下载PDF
基于轻量化生成对抗网络的遥感图像超分辨率重建
13
作者 张鹏婴 张明 +1 位作者 李建军 张宝华 《激光杂志》 CAS 北大核心 2024年第4期114-120,共7页
针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Blo... 针对ESRGAN模型复杂度高、特征提取与表示性能欠佳的问题,提出了一种基于轻量化生成对抗网络(Light weight Generative Adversarial Network, LwGAN)的遥感图像超分辨率重建算法。该算法以改进残差密集模块(Improved Residual Dense Block, IRDB)为基础块构建生成网络的高阶特征提取部分,提取了丰富的多样化特征,同时建立了特征的通道及长距离位置关系,在降低模型参数量的同时提升了模型的特征提取与表示性能。通过在UC MERCED和NWPU-RESISC45数据集上的实验结果表明,与ESRGAN相比,LwGAN获取了更大的峰值信噪比和结构相似度,显著提升了遥感图像的超分辨率重建性能,可视化结果表明重建图像恢复了更多的纹理细节信息,同时模型参数量仅为原始ESRGAN的约三分之一,大幅地提高了模型的运行效率,为后续遥感图像的分析处理奠定了基础。 展开更多
关键词 分辨率重建 遥感图像 生成对抗网络 残差密集 坐标注意力
下载PDF
基于感受野扩展残差注意力网络的图像超分辨率重建
14
作者 郭琳 刘坤虎 +2 位作者 马晨阳 来佑雪 徐映芬 《计算机应用》 CSCD 北大核心 2024年第5期1579-1587,共9页
针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各... 针对现有残差网络存在残差特征利用不充分、细节丢失的问题,提出一种结合两层残差聚合结构和感受野扩展双注意力机制的深度神经网络模型,用于单幅图像超分辨率(SISR)重建。该模型通过跳跃连接形成两层嵌套的残差聚合网络结构,对网络各层提取的大量残差信息进行分层聚集和融合,能减少包含图像细节的残差信息的丢失。同时,设计一种多尺度感受野扩展模块,能捕获更大范围、不同尺度的上下文相关信息,促进深层残差特征的有效提取;并引入空间-通道双注意力机制,增强残差网络的判别性学习能力,提高重建图像质量。在数据集Set5、Set14、BSD100和Urban100上进行重建实验,并从客观指标和主观视觉效果上将所提模型与主流模型进行比较。客观评价结果表明,所提模型在全部4个测试数据集上均优于对比模型,其中,相较于经典的超分辨率卷积神经网络(SRCNN)模型和性能次优的对比模型ISRN(Iterative Super-Resolution Network),在放大2倍、3倍、4倍时的平均峰值信噪比(PSNR)分别提升1.91、1.71、1.61 dB和0.06、0.04、0.04 dB;视觉效果对比显示,所提模型恢复的图像细节纹理更清晰。 展开更多
关键词 图像分辨 残差网络 感受野 深度学习 注意力
下载PDF
级联残差优化Transformer网络的图像超分辨率重建
15
作者 林坚普 吴镇城 +3 位作者 王崑赋 林志贤 郭太良 林珊玲 《光学精密工程》 EI CAS CSCD 北大核心 2024年第12期1902-1914,共13页
为了扩展图像超分辨率算法中卷积神经网络在多个尺度特征上的自适应学习能力,提升网络性能,本文提出一种基于级联残差方法的Transformer网络优化结构进行图像超分辨率重建。首先,该网络采用级联残差结构,增强了网络对低阶和中阶特征的... 为了扩展图像超分辨率算法中卷积神经网络在多个尺度特征上的自适应学习能力,提升网络性能,本文提出一种基于级联残差方法的Transformer网络优化结构进行图像超分辨率重建。首先,该网络采用级联残差结构,增强了网络对低阶和中阶特征的迭代复用和信息共享能力;其次,将通道注意力机制引入Transformer结构中,增强网络的特征表达和自适应学习通道权重的能力;最后,优化Transformer网络结构中的感知模块为级联感知模块,扩展网络深度,增强模型的特征表达能力。在数据集Set5,Set14,BSD100,Urban100和Manga109上进行放大2倍、3倍和4倍的重建测试并与主流方法进行对比,客观评价结果表明,在4倍放大因子的Set5数据集下,本文方法所得图像的峰值信噪比对比其他主流方法平均值提升1.14 dB,结构相似度平均值提升0.019。结合主观评价结果表明,本文方法相比其他主流方法的图像重建效果更好,恢复得到的图像纹理细节更清晰。 展开更多
关键词 卷积神经网络 图像分辨率重建 残差网络 TRANSFORMER 注意力机制
下载PDF
多分辨率特征协作的图像修复网络
16
作者 晏乙涵 吴昊 袁国武 《计算机技术与发展》 2024年第7期9-16,共8页
深度生成方法最近通过采用由粗到细的策略在图像修复领域取得了相当大的进展,但子网络串行连接的多阶段修复方法由于结构定位不准确和瓶颈层的特征表达能力欠佳,造成图像结构不连续和细节模糊。针对上述问题,提出一种多分辨率特征协作... 深度生成方法最近通过采用由粗到细的策略在图像修复领域取得了相当大的进展,但子网络串行连接的多阶段修复方法由于结构定位不准确和瓶颈层的特征表达能力欠佳,造成图像结构不连续和细节模糊。针对上述问题,提出一种多分辨率特征协作的图像修复网络,以并行的多分辨率网络结构修复破损图像。对破损图像进行并行的多分辨率编码,学习到不同尺度的结构位置特征,利用迭代融合模块动态融合多尺度信息,为破损结构的恢复提供更准确的定位,从而生成结构连贯的图像。在瓶颈层使用门控多特征提取模块,结合注意力机制和卷积操作的优势,来捕获不同维度上的远距离依赖关系并提取在不同感受野下的特征,然后采用门控残差融合来调整多种特征的权重,增强瓶颈层的特征表达能力,从而更好地恢复出缺失区域的图像细节。在CelebA-hq数据集、FFHQ数据集和Paris StreetView数据集上进行的大量实验表明,该方法在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似性(Structural Similarity,SSIM)和Frechet Inception距离(Frechet Inception Distance,FID)指标上和视觉质量上相较于其他图像修复方法都有较大提升。 展开更多
关键词 图像修复 并行的多分辨网络 融合机制 注意力机制 卷积操作
下载PDF
改进残差网络下体操动作逆光图像超分辨增强
17
作者 黄波 赵新辉 《计算机仿真》 2024年第5期231-235,309,共6页
超分辨图像有利于信息获取与传递,但当下缺少对逆光低分辨率图像的研究。为解决逆光图像中阴影噪声的问题,提出一种基于改进Retinex逆光图像分解增光算法,通过结合DRAN双重残差注意力网络,构建出逆光图像超分辨率增强模型,即NRE-DRAN模... 超分辨图像有利于信息获取与传递,但当下缺少对逆光低分辨率图像的研究。为解决逆光图像中阴影噪声的问题,提出一种基于改进Retinex逆光图像分解增光算法,通过结合DRAN双重残差注意力网络,构建出逆光图像超分辨率增强模型,即NRE-DRAN模型。模型首先将基于Retinex理论将逆光图像分解成光照量图与反射量图,并通过调节网络与恢复网络处理两分量图,然后将处理后的分量图融合,降低逆光噪声的影响;接着采用DRAN特征提取模块提取浅层纹理特征与深层语义特征,然后利用信息蒸馏模块增强特征信息,并串联拼接成融合特征图,最后基于残差图与上采样图重构出超分辨图像。多组基线算法叠加模型仿真对比结果表明,在GBI体操动作逆光图像数据集上,NRE-DRAN模型具有最优的SSIM指标(较其它叠加模型相比平均提升了3.93%)与较优的PSNR指标(指标排名第二)。综上所示,NRE-DRAN逆光图像超分辨率增强模型在解决逆光阴影噪声问题的同时有效的增强了图像的超分辨率,且该模型具有较高的时效性。 展开更多
关键词 分辨增强 逆光图像 残差网络
下载PDF
多尺度特征提取残差网络的超分辨率图像重建算法
18
作者 钟梦圆 姜麟 李超 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期76-85,共10页
为了改善超分辨率图像重建算法存在的图像低频信息提取不足、边缘轮廓模糊、风格信息丢失等问题,提出一种全新的多尺度特征提取残差网络,在生成器网络结构中叠加使用残差特征聚合模块与多尺度感受野模块;采取浅层特征与深层特征接替训练... 为了改善超分辨率图像重建算法存在的图像低频信息提取不足、边缘轮廓模糊、风格信息丢失等问题,提出一种全新的多尺度特征提取残差网络,在生成器网络结构中叠加使用残差特征聚合模块与多尺度感受野模块;采取浅层特征与深层特征接替训练,辅助网络对低频、高频信息的提取与融合;新添风格损失函数以约束风格信息,确保图像纹理、色彩、亮度等风格信息的有效传递。在自然景物占多数且细节信息多样的BSD100数据集上,其4倍图像重建的峰值信噪比(peak signal to noise ratio, PSNR)达到31.81 dB、结构相似性(structural similarity, SSIM)达到0.87,相比原始的超分辨率生成对抗(super-resolution generative adversarial network, SRGAN)算法,PSNR提高了3.47 dB,SSIM提高了0.04。实验结果表明,所提算法能够深层次学习自然景物图像在纹理细节、色彩亮度等方面的特征信息,实现多层网络结构对特征信息的连续性记忆性学习、提取与传递,使得重建图像质量更高。 展开更多
关键词 图像处理 分辨 生成对抗网络 特征提取 特征融合
下载PDF
基于卷积神经网络和Transformer的高效图像超分辨率重建
19
作者 李邦源 杨家全 +3 位作者 薛若漪 张晓宇 汪航 孙宏滨 《云南电力技术》 2024年第2期41-48,共8页
深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实... 深度学习推动了图像超分辨率重建技术的显著进步,但复杂的操作导致计算和内存成本高昂,限制了其实际应用。为此,提出了一种新颖的算法,融合了Transformer和卷积神经网络,同时采用膨胀卷积和深度可分离卷积技术。在五个基准数据集上的实验证明,所提EHN模型能够高效提取超分辨率特征,在更少参数和推理时间下实现与现有方法相当甚至更好的超分辨率效果。特别地,在×2、×3和×4放大倍数下,EHN的推理时间仅为现有网络的18.4%、18.9%和20.3%,这一优势对于处理大量图像的场景至关重要,能够显著减少计算时间和资源消耗,提升整体效率。 展开更多
关键词 图像分辨 TRANSFORMER 卷积神经网络 膨胀卷积 深度可分离卷积
下载PDF
高频信息强化的双分支高光谱图像超分辨率网络
20
作者 侯钧译 杨锦 +1 位作者 边太成 朱习军 《计算机系统应用》 2024年第10期217-227,共11页
高光谱图像(hyperspectral image,HSI)的窄光谱波段为许多视觉任务提供了丰富信息,但也给特征提取带来了挑战.尽管许多研究者提出了各种深度学习方法,但尚未充分结合这些架构的优势.因此,本文提出了一种基于高频信息强化的双分支高光谱... 高光谱图像(hyperspectral image,HSI)的窄光谱波段为许多视觉任务提供了丰富信息,但也给特征提取带来了挑战.尽管许多研究者提出了各种深度学习方法,但尚未充分结合这些架构的优势.因此,本文提出了一种基于高频信息强化的双分支高光谱图像超分辨率网络(HFEDB-Net),将卷积神经网络(convolutional neural network,CNN)的图像空间特征提取优势与Transformer的自适应能力和长距离依赖提取优势相结合,有效地提取了HSI的空间和光谱信息.HFEDB-Net由高频信息强化分支和主干分支组成.在高频信息强化分支中,通过拉普拉斯金字塔提取低分辨率和高分辨率HSI的高频信息,并将结果作为高频分支的输入和标签,采用光谱强化Transformer来作为该分支的方法.在主干分支中,使用结合通道注意力的CNN充分提取空间特征和光谱信息.最后将两个分支的结果通过CNN进行结合以得到最终的重建图像.此外,采用多头注意力和多尺度策略分别改进了Transformer的注意力机制和编码器层,以更好地提取HSI的空间和光谱信息.实验结果表明,HFEDB-Net在两个公开数据集上的定量评价指标和视觉效果上优于当前主流方法. 展开更多
关键词 高光谱图像 分辨率重建 自注意力机制 神经网络
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部