期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于图像分割网络的深度假脸视频篡改检测 被引量:15
1
作者 胡永健 高逸飞 +1 位作者 刘琲贝 廖广军 《电子与信息学报》 EI CSCD 北大核心 2021年第1期162-170,共9页
随着深度学习技术的快速发展,利用深度神经网络模型伪造出的深度假脸(deepfake)视频越来越逼真,假脸视频造成的威胁也越来越大。文献中已出现一些基于卷积神经网络的换脸视频检测算法,他们在库内获得较好的检测效果,但跨库检测性能急剧... 随着深度学习技术的快速发展,利用深度神经网络模型伪造出的深度假脸(deepfake)视频越来越逼真,假脸视频造成的威胁也越来越大。文献中已出现一些基于卷积神经网络的换脸视频检测算法,他们在库内获得较好的检测效果,但跨库检测性能急剧下降,存在泛化能力不足的问题。该文从假脸篡改的机制出发,将视频换脸视为特殊的拼接篡改问题,利用流行的神经分割网络首先预测篡改区域,得到预测掩膜概率图,去噪并二值化,然后根据换脸主要发生在人脸区域的前提,提出一种计算人脸交并比的新方法,并进一步根据换脸处理的先验知识改进人脸交并比的计算,将其作为篡改检测的分类准则。所提出方法分别在3个不同的基础分割网络上实现,并在TIMIT,FaceForensics++,FFW数据库上进行了实验,与文献中流行的同类方法相比,在保持库内检测的高准确率同时,跨库检测的平均错误率显著下降。在近期发布的合成质量较高的DFD数据库上也获得了很好的检测性能,充分证明了所提出方法的有效性和通用性。 展开更多
关键词 假脸视频 图像分割网络 人脸交并比 信任机制 泛化能力
下载PDF
人工智能技术在心脏超声常规参数测量及左室舒张性慢性心力衰竭诊断中的应用 被引量:2
2
作者 于立恒 林锡祥 +1 位作者 陈煦 何昆仑 《陕西医学杂志》 CAS 2023年第7期826-830,共5页
目的:探究人工智能算法模型在心脏超声常规参数测量及左室舒张性慢性心力衰竭(CHF)诊断中的应用效果。方法:收集410例左室舒张性CHF疑似病例者心脏超声图像为研究对象。由一组高年资超声医师完成纳入病例者的心脏超声参数测量;同时,采... 目的:探究人工智能算法模型在心脏超声常规参数测量及左室舒张性慢性心力衰竭(CHF)诊断中的应用效果。方法:收集410例左室舒张性CHF疑似病例者心脏超声图像为研究对象。由一组高年资超声医师完成纳入病例者的心脏超声参数测量;同时,采用人工智能深度学习模型,即图像分割卷积神经网络,对纳入者心脏超声图像进行自动智能分割,并设计专门算法计算基于心脏超声影像的心脏结构和功能参数。通过比较两种方法获得心脏超声参数的一致性、偏差情况及受试者工作特征曲线(ROC)来探究人工智能深度学习技术在左室舒张性CHF诊断中的价值。结果:人工智能与医师所测心脏超声参数左室舒张末期容积(LVEDV)、左室收缩末期容积(LVESV)、左室射血分数(LVEF)间一致性一般(0.60≤ICC<0.80),E/A、E/e’、主动脉瓣峰值流速(AVPW)一致性极好(ICC≥0.80)。Bland-Altman分析表明,人工智能与医师所测心脏超声参数LVEDV、LVESV、LVEF间偏差较大,平均偏差分别为-16.9%、-7.0%和1.0%,E/A、E/e’、AVPW间偏差较低,平均偏差分别为0.0%、-0.4%和-0.0%。ROC曲线显示,人工智能所测E/A、E/e’、AVPW均对左心室舒张性CHF具有一定诊断价值(AUC=0.853、0.777、0.770,P<0.05)。结论:人工智能可快速识别并分割处理心脏超声图像,自动计算常规心脏参数,且关键参数与高年资超声医师结果一致性较好,并能用于左室舒张性CHF的临床辅助诊断。 展开更多
关键词 心脏超声 人工智能 深度学习 图像分割卷积神经网络 慢性心力衰竭 左室舒张功能
下载PDF
基于CBAM-Res_UNet电厂高压蒸汽泄漏检测研究 被引量:13
3
作者 彭道刚 刘薇薇 +1 位作者 戚尔江 胡捷 《电子测量与仪器学报》 CSCD 北大核心 2021年第12期206-214,共9页
发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_... 发电厂高压蒸汽泄漏检测关乎电厂设备长期稳定运行。为了提高电厂高压蒸汽泄漏检测的准确性,解决泄漏区域的错分割和漏分割问题,提出基于CBAM-Res_UNet图像分割网络的电厂高压蒸汽泄漏检测算法,在UNet结构中加入ResNet的残差块residual_block来获取泄漏图像更多的语义信息,并且融入CBAM,加强高压蒸汽泄漏图像区域特征的学习,网络再根据不同损失函数和评价标准对图像分割结果的影响,选择损失函数Focal Loss+Dice Loss和性能指标F1_score。通过在电厂高压蒸汽泄漏图像数据集上进行实验,CBAM-Res_UNet网络得到的F1_score值为0.985,实验结果表明,该网络可以更加完整的分割出蒸汽泄漏区域,对高压蒸汽泄漏图像多样性有较强的泛化能力。 展开更多
关键词 电厂高压蒸汽泄漏检测 CBAM-Res_UNet图像分割网络 损失函数Focal Loss+Dice Loss 性能指标F1_score
下载PDF
EFFECTIVE FEATURE ANALYSIS FOR COLOR IMAGE SEGMENTATION 被引量:2
4
作者 黎宁 毛四新 李有福 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期206-212,共7页
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen... An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images. 展开更多
关键词 image segmentation color image neural networks fuzzy clustering feature encoding
下载PDF
Remote Sensing Image Segmentation with Probabilistic Neural Networks 被引量:4
5
作者 LIUGang 《Geo-Spatial Information Science》 2005年第1期28-32,49,共6页
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especiall... This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results. 展开更多
关键词 image segmentation probabilistic neural network(PNN)
下载PDF
Automatic Liver Segmentation Scheme for MRI Images Based on Cellular Neural Networks 被引量:1
6
作者 Zhang Qun Min Lequan +1 位作者 Zhang Jie Zhang Min 《China Communications》 SCIE CSCD 2012年第9期89-95,共7页
Currently, the processing speed of exist-ing autormtic liver segmentation for Magnetic Res-onance Imaging (MRI) images is rehtively slow. An automatic liver segmentation scheme for MRI irmges based on Cellular Neura... Currently, the processing speed of exist-ing autormtic liver segmentation for Magnetic Res-onance Imaging (MRI) images is rehtively slow. An automatic liver segmentation scheme for MRI irmges based on Cellular Neural Networks (CNN) is presented in this paper. It ensures the validity of this scheme and at the same time completes the im-age segmentation faster to accurately calculate the liver volume by using parallel computing in real time. In order to facilitate the CNN irmge process-hag, firstly, three-dimensional liver MRI images should be transformed into binary images; second- ly, an appropriate template parameter of the Global Connectivity Detection CNN (GCD CNN) shall be selected to probe the connectivity of the liver to extract the entire liver; and then the Hole-Filler CNN (HF CNN) are used to repair the entire extracting liver and improve the accuracy of fiver segmentation; final-ly, the liver volume is obtained. Results show that the scheme can ensure the accuracy of the automatic seg-mentation of the liver, and it can also improve the processing speed at the same time. The liver volume calculated is in line with the clinical diagnosis. 展开更多
关键词 MRI liver segmentation volume meas-urement CNN Bevel theory
下载PDF
Automated Classification of Segmented Cancerous Cells in Multispectral Images
7
作者 Alaa Hilal Jamal Charara Ali Al Houseini Walid Hassan Mohamad Nassreddine 《Journal of Life Sciences》 2013年第4期358-362,共5页
Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or ... Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or noncancerous. The authors have developed a new approach aiming to detect colon cancer cells derived from the "Snake" method but using a progressive division of the dimensions of the image to achieve rapid segmentation. The aim of the present paper was to classify different cancerous cell types based on nine morphological parameters and on probabilistic neural network. Three types of cells were used to assess the efficiency of our classifications models, including BH (Benign Hyperplasia), IN (Intraepithelial Neoplasia) that is a precursor state for cancer, and Ca (Carcinoma) that corresponds to abnormal tissue proliferation (cancer). Results showed that among the nine parameters used to classify cells, only three morphologic parameters (area, Xor convex and solidity) were found to be effective in distinguishing the three types of cells. In addition, classification of unknown cells was possible using this method. 展开更多
关键词 Multispectral image CLASSIFICATION morphologic parameters probabilistic neural network.
下载PDF
Research on the Natural Image Classification and Segmentation Algorithm based on GPU and Neural Network
8
作者 Liwei Chen 《International Journal of Technology Management》 2015年第9期53-55,共3页
In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas rela... In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas related to image processing, and involved in various types. With the fast development of computing technology and integrated circuit technology, the renewal speed of graphics hardware. Our method combines the GPU with network to optimize the traditional image segmentation and classification methods which will be meaningful. In the future, we will focus our attention on the hardware deployment of the GPU to modify the current approach. 展开更多
关键词 Image Classification Image Segmentation GPU and Neural Network.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部