Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given da...Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over...These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.展开更多
Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust...Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust features from various viewpoint images and rapidly calculate similarity between features in the image database or video stream.In order to solve these problems,an effective and rapid image classification method was presented for the object recognition based on the video learning technique.The optical-flow and RANSAC algorithm were used to acquire scene images from each video sequence.After the selection of scene images,the local maximum points on comer of object around local area were found using the Harris comer detection algorithm and the several attributes from local block around each feature point were calculated by using scale invariant feature transform (SIFT) for extracting local descriptor.Finally,the extracted local descriptor was learned to the three-dimensional pyramid match kernel.Experimental results show that our method can extract features in various multi-viewpoint images from query video and calculate a similarity between a query image and images in the database.展开更多
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom...A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.展开更多
With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important inf...With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.展开更多
In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas rela...In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas related to image processing, and involved in various types. With the fast development of computing technology and integrated circuit technology, the renewal speed of graphics hardware. Our method combines the GPU with network to optimize the traditional image segmentation and classification methods which will be meaningful. In the future, we will focus our attention on the hardware deployment of the GPU to modify the current approach.展开更多
In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representat...In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.展开更多
This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to ...This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.展开更多
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis...Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.展开更多
An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based cl...An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.展开更多
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ...This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.展开更多
In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches ...In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.展开更多
Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article ...Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article describes the overall study on land water in the program of global land cover remote sensing mapping. Through collection and processing of Landsat TM/ETM+, China's HJ-1 satellite image, etc., the program achieves an effective overlay of global multi-spectral image of 30 m resolution for two base years, namely, 2000 and 2010, with the image rectification accuracy meeting the requirements of 1:200000 mapping and the error in registration of images for the two periods being controlled within 1 pixel. The indexes were designed and selected reasonably based on spectral features and geometric shapes of water on the scale of 30 m resolution, the water information was extracted in an elaborate way by combining a simple and easy operation through pixel-based classification method with a comprehensive utilization of various rules and knowledge through the object-oriented classification method, and finally the classification results were further optimized and improved by the human-computer interaction, thus realizing high-resolution remote sensing mapping of global water. The completed global land water data results, including Global Land 30-water 2000 and Global Land 30-water 2010, are the classification results featuring the highest resolution on a global scale, and the overall accuracy of self-assessment is 96%. These data are the important basic data for developing relevant studies, such as analyzing spatial distribution pattern of global land water, revealing regional difference, studying space-time fluctuation law, and diagnosing health of ecological environment.展开更多
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre...An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.展开更多
In mountainous areas, it is the undulant terrain, various types of geomorphic and land use that make the remote sensing images great metamorphism. Moreover, due to the elevation, there are many areas covered with shad...In mountainous areas, it is the undulant terrain, various types of geomorphic and land use that make the remote sensing images great metamorphism. Moreover, due to the elevation, there are many areas covered with shadow, clouds and snow that make the images more inaccurate. As a result, it would be very difficult to carry out auto-classification of RS images in these areas. The study took Southwest China as the case study area and the TM images, SPOT images as the basic information sources assisted by the auxiliary data of DEM, NDVl, topographical maps and soil maps to preprocess the images. After preprocessing by topographic correction and wiping off clouds, snow and shadows, all the image data were stacked together to form the images to be classified. Then, the research used segmentation technology and hierarchical method to extract the main types of land use in the area automatically. The results indicated that the qualitative accuracies of all types of land use extracted in Southwest China were above 90 percent, and the quantitative accuracies was above 86 percent. The goal of reducing workloads had been realized.展开更多
Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In...Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.展开更多
基金Supported by the Key National Natural Science Foundation of China(61035003)~~
文摘Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Supported by the National High Technology Research and Development Programme (No.2007AA12Z227) and the National Natural Science Foundation of China (No.40701146).
文摘These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.
文摘Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust features from various viewpoint images and rapidly calculate similarity between features in the image database or video stream.In order to solve these problems,an effective and rapid image classification method was presented for the object recognition based on the video learning technique.The optical-flow and RANSAC algorithm were used to acquire scene images from each video sequence.After the selection of scene images,the local maximum points on comer of object around local area were found using the Harris comer detection algorithm and the several attributes from local block around each feature point were calculated by using scale invariant feature transform (SIFT) for extracting local descriptor.Finally,the extracted local descriptor was learned to the three-dimensional pyramid match kernel.Experimental results show that our method can extract features in various multi-viewpoint images from query video and calculate a similarity between a query image and images in the database.
文摘A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome.
文摘With rapid development of remote sensing technology, the resolution of remote sensing images is increasingly improved; then people can extract more useful data and information from these images. Thus, an important information extraction method from remote sensing images - image classification, becomes more and more important. Based on phenopthase and band composition characteristics, this paper firstly discusses the important role of background parameters in remote sensing images classification; then based on geographical infomation system technology, the computerized automatic classification to high-medium-low-yield croplands in Dingxiang County of Shanxi Province in rotate sensing images has been carried out by using eompound layers classification method of multi-thematic information; compared the classification result to the visual interpretation results, the accuracy increases from 70% to above 90%.
文摘In this paper, we conduct research on the natural image classification and segmentation algorithm based on GPU and neural network. The application of image segmentation is very broad, almost appeared in all areas related to image processing, and involved in various types. With the fast development of computing technology and integrated circuit technology, the renewal speed of graphics hardware. Our method combines the GPU with network to optimize the traditional image segmentation and classification methods which will be meaningful. In the future, we will focus our attention on the hardware deployment of the GPU to modify the current approach.
基金Supported by the National Natural Science Foundation of China(No.61379014)
文摘In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.
文摘This paper proposes a new method for ship recognition and classification using sound produced and radiated underwater. To do so, a three-step procedure is proposed. First, the preprocessing operations are utilized to reduce noise effects and provide signal for feature extraction. Second, a binary image, made from frequency spectrum of signal segmentation, is formed to extract effective features. Third, a neural classifier is designed to classify the signals. Two approaches, the proposed method and the fractal-based method are compared and tested on real data. The comparative results indicated better recognition ability and more robust performance of the proposed method than the fractal-based method. Therefore, the proposed method could improve the recognition accuracy of underwater acoustic targets.
文摘Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.
文摘An improved approach for JSEG is presented for unsupervised segmentation of homogeneous regions in gray-scale images. Instead of intensity quantization, an automatic classification method based on scale space-based clustering is used for nonparametric clustering of image data set. Then EM algorithm with classification achieved by space-based classification scheme as initial data used to achieve Gaussian mixture modelling of image data set that is utilized for the calculation of soft J value. Original region growing algorithm is then used to segment the image based on the multiscale soft J-images. Experiments show that the new method can overcome the limitations of JSEG successfully.
文摘This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.
文摘In this paper, we conduct research on the novel natural image reconstruction and representation algorithm based on clustenng and modified neural network. Image resolution enhancement is one of the earliest researches of single image interpolation. Although the traditional interpolation and method for single image amplification is effect, but did not provide more useful information. Our method combines the neural network and the clustering approach. The experiment shows that our method performs well and satisfactory.
基金supported by the National High-Tech R&D Program of China(Grant Nos.2009AA122003 and 2009AA122001)
文摘Land water, one of the important components of land cover, is the indispensable and important basic information for climate change studies, ecological environment assessment, macro-control analysis, etc. This article describes the overall study on land water in the program of global land cover remote sensing mapping. Through collection and processing of Landsat TM/ETM+, China's HJ-1 satellite image, etc., the program achieves an effective overlay of global multi-spectral image of 30 m resolution for two base years, namely, 2000 and 2010, with the image rectification accuracy meeting the requirements of 1:200000 mapping and the error in registration of images for the two periods being controlled within 1 pixel. The indexes were designed and selected reasonably based on spectral features and geometric shapes of water on the scale of 30 m resolution, the water information was extracted in an elaborate way by combining a simple and easy operation through pixel-based classification method with a comprehensive utilization of various rules and knowledge through the object-oriented classification method, and finally the classification results were further optimized and improved by the human-computer interaction, thus realizing high-resolution remote sensing mapping of global water. The completed global land water data results, including Global Land 30-water 2000 and Global Land 30-water 2010, are the classification results featuring the highest resolution on a global scale, and the overall accuracy of self-assessment is 96%. These data are the important basic data for developing relevant studies, such as analyzing spatial distribution pattern of global land water, revealing regional difference, studying space-time fluctuation law, and diagnosing health of ecological environment.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB950800)International S&T Cooperation Program of China (Grant No. 2010DFA21880)China Postdoctoral Science Foundation (Grant No. 2012M510053)
文摘An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.
基金Supported by the National Public Welfare Project on Environmental Protection (2007KYYW21)the Program of National Science and Technology research(2006BAC01A01-05)
文摘In mountainous areas, it is the undulant terrain, various types of geomorphic and land use that make the remote sensing images great metamorphism. Moreover, due to the elevation, there are many areas covered with shadow, clouds and snow that make the images more inaccurate. As a result, it would be very difficult to carry out auto-classification of RS images in these areas. The study took Southwest China as the case study area and the TM images, SPOT images as the basic information sources assisted by the auxiliary data of DEM, NDVl, topographical maps and soil maps to preprocess the images. After preprocessing by topographic correction and wiping off clouds, snow and shadows, all the image data were stacked together to form the images to be classified. Then, the research used segmentation technology and hierarchical method to extract the main types of land use in the area automatically. The results indicated that the qualitative accuracies of all types of land use extracted in Southwest China were above 90 percent, and the quantitative accuracies was above 86 percent. The goal of reducing workloads had been realized.
基金Project partially supported by the Ministry of Knowledge Economy (MKE) of Korea under the Information Technology Research Center (ITRC) Support Programthe Basic Research Program of the Korea Science (No. R01-2006-000-11214-0)
文摘Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.