期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于灰度密度分布特征的肺结节良恶性分类 被引量:1
1
作者 NGUYEN XUAN HIEN 《软件导刊》 2019年第5期181-186,共6页
CT图像中肺结节良恶性鉴别是肺癌计算机辅助诊断研究中的关键。为了提高计算机辅助诊断系统中肺结节良恶性诊断准确性,提出一种基于密度分布特征的肺结节良/恶性判断方法。首先,从肺部肿瘤图像中随机提取图像小单元集并计算其自相关矩阵... CT图像中肺结节良恶性鉴别是肺癌计算机辅助诊断研究中的关键。为了提高计算机辅助诊断系统中肺结节良恶性诊断准确性,提出一种基于密度分布特征的肺结节良/恶性判断方法。首先,从肺部肿瘤图像中随机提取图像小单元集并计算其自相关矩阵,然后通过K-means算法对该矩阵实现无监督聚类。特征提取时遍历计算肺结节图像每一像素的灰度密度分布等级,并统计、归一化得到10维特征向量,最后通过卷积方法对特征进行优化。同时,利用随机森林分类器进行模型训练,进而判断肺结节良/恶性水平,提出算法的验证数据为LIDC-IDRI。实验结果表明,最大AUC可达0.955 8。对比分析,该特征表达方法具有更优分类效果和更高鲁棒性。 展开更多
关键词 图像单元集 LIDC-IDRI 良恶性分类 密度分布特征 K均值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部