A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low ...Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low computational complexity, a block-maching motion estimation algorithm based on two-step search is proposed in this paper. According to the fact that the gray values of adjacent pixels will not vary fast, the algorithm employs an interlaced search pattem in the search window to estimate the motion vector of the objectblock. Simulation and actual experiments demanstrate that the proposed algmithm greatly outperforms the well-known three-step search and dianond search algoritlam, no matter the motion vector is large or small. Comparedc with the full search algorithm, the proposed one achieves similar peffomance but requires much less computation, therefore, the algorithm is well qualified for real-time video image processing.展开更多
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
基金supported by the Lab Open Fund of Beijing Microchemical Research Institute(P2008026EB)
文摘Aiming at the shortcoming that certain existing blockingmatching algorithrns, such as full search, three-step search, and dia- mond search algorithms, usually can not keep a good balance between high acoaracy and low computational complexity, a block-maching motion estimation algorithm based on two-step search is proposed in this paper. According to the fact that the gray values of adjacent pixels will not vary fast, the algorithm employs an interlaced search pattem in the search window to estimate the motion vector of the objectblock. Simulation and actual experiments demanstrate that the proposed algmithm greatly outperforms the well-known three-step search and dianond search algoritlam, no matter the motion vector is large or small. Comparedc with the full search algorithm, the proposed one achieves similar peffomance but requires much less computation, therefore, the algorithm is well qualified for real-time video image processing.