基于分块迭代函数的全搜索分形图像编码算法,因其编码过程特别耗时而限制了它的诸多应用。为了减少编码时间,通过定义每个range块和domain块的子块特征,根据匹配均方根误差与它的关系,设计出一个限制搜索空间的新算法。一个待编码range...基于分块迭代函数的全搜索分形图像编码算法,因其编码过程特别耗时而限制了它的诸多应用。为了减少编码时间,通过定义每个range块和domain块的子块特征,根据匹配均方根误差与它的关系,设计出一个限制搜索空间的新算法。一个待编码range块和它的最佳匹配domain块的子块特征应该接近,因此,每个range块的最佳匹配块搜索范围仅限定在与其子块特征接近的domain块邻域内,以达到加快编码过程的目标。14幅图像的仿真结果表明,该算法能够在PSNR降低0.73 d B(其结构相似性SSIM值仅下降0.002)的情况下,平均加快全搜索分形编码算法的编码速度99倍左右,而且也优于其他特征算法。展开更多
设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征...设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征表示的优秀代表,然而,人为设计图像块特征间的差异往往不能足够理想地反映图像块间的相似性.核描述子(kernel descriptor,简称KD)方法提供了一种新的方式生成图像块特征,在图像块间匹配核函数基础上,应用核主成分分析(kernel principal component analysis,简称KPCA)方法进行特征表示,且在图像分类应用上获得不错的性能.但是,该方法需要利用所有联合基向量去生成核描述子特征,导致算法时间复杂度较高.为了解决这个问题,提出了一种算法生成图像块特征表示,称为有效图像块描述子(efficient patch-level descriptor,简称EPLd).算法建立在不完整Cholesky分解基础上,自动选择少量的标志性图像块以提高算法效率,且利用MMD(maximum mean discrepancy)距离计算图像间的相似性.实验结果表明,该算法在图像/场景分类应用中获得了优秀的性能.展开更多
A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algo...A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.展开更多
文摘基于分块迭代函数的全搜索分形图像编码算法,因其编码过程特别耗时而限制了它的诸多应用。为了减少编码时间,通过定义每个range块和domain块的子块特征,根据匹配均方根误差与它的关系,设计出一个限制搜索空间的新算法。一个待编码range块和它的最佳匹配domain块的子块特征应该接近,因此,每个range块的最佳匹配块搜索范围仅限定在与其子块特征接近的domain块邻域内,以达到加快编码过程的目标。14幅图像的仿真结果表明,该算法能够在PSNR降低0.73 d B(其结构相似性SSIM值仅下降0.002)的情况下,平均加快全搜索分形编码算法的编码速度99倍左右,而且也优于其他特征算法。
文摘设计图像块特征表示是计算机视觉领域内的基本研究内容,优秀的图像块特征表示能够有效地提高图像分类、对象识别等相关算法的性能.SIFT(scale-invariant feature transform)和HOG(histogram of oriented gradient)是人为设计图像块特征表示的优秀代表,然而,人为设计图像块特征间的差异往往不能足够理想地反映图像块间的相似性.核描述子(kernel descriptor,简称KD)方法提供了一种新的方式生成图像块特征,在图像块间匹配核函数基础上,应用核主成分分析(kernel principal component analysis,简称KPCA)方法进行特征表示,且在图像分类应用上获得不错的性能.但是,该方法需要利用所有联合基向量去生成核描述子特征,导致算法时间复杂度较高.为了解决这个问题,提出了一种算法生成图像块特征表示,称为有效图像块描述子(efficient patch-level descriptor,简称EPLd).算法建立在不完整Cholesky分解基础上,自动选择少量的标志性图像块以提高算法效率,且利用MMD(maximum mean discrepancy)距离计算图像间的相似性.实验结果表明,该算法在图像/场景分类应用中获得了优秀的性能.
文摘A new method to accelerate the convergent rate of the space-alternatinggeneralized expectation-maximization (SAGE) algorithm is proposed. The new rescaled block-iterativeSAGE (RBI-SAGE) algorithm combines the RBI algorithm with the SAGE algorithm for PET imagereconstruction. In the new approach, the projection data is partitioned into disjoint blocks; eachiteration step involves only one of these blocks. SAGE updates the parameters sequentially in eachblock. In experiments, the RBI-SAGE algorithm and classical SAGE algorithm are compared in theapplication on positron emission tomography (PET) image reconstruction. Simulation results show thatRBI-SAGE has better performance than SAGE in both convergence and image quality.