A new method that uses a modified ordered subsets (MOS) algorithm to improve the convergence rate of space-alternating generalized expectation-maximization (SAGE) algorithm for positron emission tomography (PET)...A new method that uses a modified ordered subsets (MOS) algorithm to improve the convergence rate of space-alternating generalized expectation-maximization (SAGE) algorithm for positron emission tomography (PET) image reconstruction is proposed.In the MOS-SAGE algorithm,the number of projections and the access order of the subsets are modified in order to improve the quality of the reconstructed images and accelerate the convergence speed.The number of projections in a subset increases as follows:2,4,8,16,32 and 64.This sequence means that the high frequency component is recovered first and the low frequency component is recovered in the succeeding iteration steps.In addition,the neighboring subsets are separated as much as possible so that the correlation of projections can be decreased and the convergences can be speeded up.The application of the proposed method to simulated and real images shows that the MOS-SAGE algorithm has better performance than the SAGE algorithm and the OSEM algorithm in convergence and image quality.展开更多
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
A new on-line remote particle analysis system based on image processing has been developed to measure microparticles. The system is composed of particle collector sensor (PCS), particle image sensor (PIS), image r...A new on-line remote particle analysis system based on image processing has been developed to measure microparticles. The system is composed of particle collector sensor (PCS), particle image sensor (PIS), image remote transmit module and image processing system. Then some details of image processing are discussed. The main advantage of this system is more convenient in particle sample collection and particle image acquisition. The particle size can be obtained using the system with a deviation abot less than 1 μm, and the particle number can be obtained without deviation. The developed system is also convenient and versatile for other analyses of microparticle for academic and indttstrial application.展开更多
基金The National Basic Research Program of China (973Program) (No.2003CB716102).
文摘A new method that uses a modified ordered subsets (MOS) algorithm to improve the convergence rate of space-alternating generalized expectation-maximization (SAGE) algorithm for positron emission tomography (PET) image reconstruction is proposed.In the MOS-SAGE algorithm,the number of projections and the access order of the subsets are modified in order to improve the quality of the reconstructed images and accelerate the convergence speed.The number of projections in a subset increases as follows:2,4,8,16,32 and 64.This sequence means that the high frequency component is recovered first and the low frequency component is recovered in the succeeding iteration steps.In addition,the neighboring subsets are separated as much as possible so that the correlation of projections can be decreased and the convergences can be speeded up.The application of the proposed method to simulated and real images shows that the MOS-SAGE algorithm has better performance than the SAGE algorithm and the OSEM algorithm in convergence and image quality.
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
基金supported by the National Natural Science Foundation of China (No.61074163)
文摘A new on-line remote particle analysis system based on image processing has been developed to measure microparticles. The system is composed of particle collector sensor (PCS), particle image sensor (PIS), image remote transmit module and image processing system. Then some details of image processing are discussed. The main advantage of this system is more convenient in particle sample collection and particle image acquisition. The particle size can be obtained using the system with a deviation abot less than 1 μm, and the particle number can be obtained without deviation. The developed system is also convenient and versatile for other analyses of microparticle for academic and indttstrial application.