期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于四向差分的局部模糊图像检测 被引量:1
1
作者 段新涛 宋黎明 孙印杰 《电脑知识与技术》 2012年第7期4725-4727,共3页
针对图像的局部模糊现象,提出基于四向差分的局部模糊图像检测算法。首先计算待检测图像的在0°,45°,90°,135°四个方向上差分图像,然后对差分图像分块计算每个图像子块的方差值,用最小的方差值与阈值比较决定其是否... 针对图像的局部模糊现象,提出基于四向差分的局部模糊图像检测算法。首先计算待检测图像的在0°,45°,90°,135°四个方向上差分图像,然后对差分图像分块计算每个图像子块的方差值,用最小的方差值与阈值比较决定其是否为模糊图像,并用图像的形态学操作去除检测时的噪点。实验表明算法对于高斯模糊和运动模糊图像都能较好的检测出图像的模糊区域。 展开更多
关键词 局部模糊图像 四向差分 方差 高斯模糊 运动模糊 图像形态学操作
下载PDF
Automatic cell object extraction of red tide algae in microscopic images
2
作者 于堃 姬光荣 郑海永 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期275-293,共19页
Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite method... Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite methods for the automatic segmentation of cells of red tide algae from microscopic images.Depending on the existence of setae,we classify the common marine red tide algae into non-setae algae species and Chaetoceros,and design segmentation strategies for these two categories according to their morphological characteristics.In view of the varied forms and fuzzy edges of non-setae algae,we propose a new multi-scale detection algorithm for algal cell regions based on border-correlation,and further combine this with morphological operations and an improved GrabCut algorithm to segment single-cell and multicell objects.In this process,similarity detection is introduced to eliminate the pseudo cellular regions.For Chaetoceros,owing to the weak grayscale information of their setae and the low contrast between the setae and background,we propose a cell extraction method based on a gray surface orientation angle model.This method constructs a gray surface vector model,and executes the gray mapping of the orientation angles.The obtained gray values are then reconstructed and linearly stretched.Finally,appropriate morphological processing is conducted to preserve the orientation information and tiny features of the setae.Experimental results demonstrate that the proposed methods can effectively remove noise and accurately extract both categories of algae cell objects possessing a complete shape,regular contour,and clear edge.Compared with other advanced segmentation techniques,our methods are more robust when considering images with different appearances and achieve more satisfactory segmentation effects. 展开更多
关键词 non-setae algae CHAETOCEROS cell extraction border-correlation non-interactive GrabCut
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部