期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Hot-Target图和特征边缘保持的图像收缩方法 被引量:5
1
作者 梁云 苏卓 +1 位作者 罗笑南 王栋 《软件学报》 EI CSCD 北大核心 2011年第4期789-800,共12页
图像收缩是缩小高分辨率图像以适应不同纵横比小尺寸显示屏幕的过程,关键是收缩后能够凸显图像重要区域,保持连续,避免扭曲.提出一种新的图像收缩方法,该方法首先基于能量失真约束,迭代收缩覆盖图像的四边形网格至目标大小,然后映射,插... 图像收缩是缩小高分辨率图像以适应不同纵横比小尺寸显示屏幕的过程,关键是收缩后能够凸显图像重要区域,保持连续,避免扭曲.提出一种新的图像收缩方法,该方法首先基于能量失真约束,迭代收缩覆盖图像的四边形网格至目标大小,然后映射,插值目标网格实现图像收缩.能量失真反映了对重要区域的凸显程度、结构的保持效果以及扭曲避免情况,失真越小,目标图像越理想.在该约束下,构成网格的子四边形非均匀收缩,重要度大的收缩小.为准确计算子四边形的重要度,根据图像显著度和边缘构建反映图像重要度的Hot-Target图.最后,通过保持图像直线边,称为特征边缘,避免非均匀收缩引起的边缘扭曲.为提高效率,降低复杂度,该方法由迭代求解线性方程实现.实验结果验证了方法的有效性. 展开更多
关键词 图像收缩 Hot-Target图 特征边缘 网格变形
下载PDF
采用双线性插值收缩的图像修复方法 被引量:32
2
作者 王昊京 王建立 +1 位作者 王鸣浩 阴玉梅 《光学精密工程》 EI CAS CSCD 北大核心 2010年第5期1234-1241,共8页
针对Criminisi等人提出的基于样本的图像修复算法存在修复耗时长、效率低的问题,提出一种采用双线性插值算法收缩待修复的图像,并结合样本块进行图像修复的方法。首先,采用双线型插值算法将待修复图像的长宽同时收缩0.2~0.5倍,在收缩... 针对Criminisi等人提出的基于样本的图像修复算法存在修复耗时长、效率低的问题,提出一种采用双线性插值算法收缩待修复的图像,并结合样本块进行图像修复的方法。首先,采用双线型插值算法将待修复图像的长宽同时收缩0.2~0.5倍,在收缩图像的目标区域中计算优先级最高的目标像素点,并在源区域中搜索最佳匹配修复块。然后,在待修复图像中根据一定规则找到对应的优先级最高的目标像素点和最佳匹配修复块,并将其填充到待修复图像的修复区域,循环运行直到目标区域修复完毕。实验结果表明,采用本文提出的算法进行图像修复时,其时效约为Criminisi等人提出的算法的5~40倍,该方法可以在获得高的修复效率同时保持良好的修复质量。 展开更多
关键词 图像修复 收缩图像 样本匹配 双线性插值 效率
下载PDF
多尺度各向异性小波收缩图像分割算法在玉米病斑特征提取时的应用 被引量:5
3
作者 朱焕 马文静 +1 位作者 盛永生 台莲梅 《黑龙江八一农垦大学学报》 2016年第2期136-140,共5页
通过选取基于LXF模型的水平集图像分割算法和快速FCM聚类图像分割算法进行对比研究,并将结合小波收缩与各向异性扩散优点的多尺度各向异性小波收缩图像分割算法应用于玉米病斑图像分割与特征提取中,该算法的分割效果明显优于前两种分割... 通过选取基于LXF模型的水平集图像分割算法和快速FCM聚类图像分割算法进行对比研究,并将结合小波收缩与各向异性扩散优点的多尺度各向异性小波收缩图像分割算法应用于玉米病斑图像分割与特征提取中,该算法的分割效果明显优于前两种分割算法。 展开更多
关键词 图像分割算法 LXF模型 快速FCM聚类 多尺度各向异性小波收缩图像分割算法 玉米叶部病斑
下载PDF
分形图象编码综述 被引量:3
4
作者 李辉 《信息工程大学学报》 2001年第2期66-70,共5页
分形图象编码是基于图象收缩仿射变换的在图象压缩领域的一门新技术。本文在收集和阅读了与分形图象编码有关文献的基础上 ,对分形图象编码近年来理论和实践上的研究现状、重大进展进行了综述 。
关键词 图象压缩 迭代函数系统 分形图像编码 图像收缩仿射变换 分形几何学 固定分块
下载PDF
A NEW APPROACH FOR UNSUPERVISED RESTORING IMAGES BASED ON WAVELET-DOMAIN PROJECTION PURSUIT LEARNING NETWORK
5
作者 LinWei TianZheng WenXianbin 《Journal of Electronics(China)》 2003年第5期383-386,共4页
The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very... The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image. 展开更多
关键词 Wavelet-domain Projection pursuit learning network Wavelet shrinkage Unsu-pervised restoring image
下载PDF
Research on Split Augmented Largrangian Shrinkage Algorithm in Magnetic Resonance Imaging Based on Compressed Sensing 被引量:2
6
作者 ZHENG Qing-bin DONG En-qing +3 位作者 YANG Pei LIU Wei JIA Da-yu SUN Hua-kui 《Chinese Journal of Biomedical Engineering(English Edition)》 2014年第3期108-120,共13页
This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MR... This paper aims to meet the requirements of reducing the scanning time of magnetic resonance imaging (MRI), accelerating MRI and reconstructing a high quality image from less acquisition data as much as possible. MRI method based on compressed sensing (CS) with multiple regularizations (two regularizations including total variation (TV) norm and L1 norm or three regularizations consisting of total variation, L1 norm and wavelet tree structure) is proposed in this paper, which is implemented by applying split augmented lagrangian shrinkage algorithm (SALSA). To solve magnetic resonance image reconstruction problems with linear combinations of total variation and L1 norm, we utilized composite spht denoising (CSD) to split the original complex problem into TV norm and L1 norm regularization subproblems which were simple and easy to be solved respectively in this paper. The reconstructed image was obtained from the weighted average of solutions from two subprohlems in an iterative framework. Because each of the splitted subproblems can be regarded as MRI model based on CS with single regularization, and for solving the kind of model, split augmented lagrange algorithm has advantage over existing fast algorithm such as fast iterative shrinkage thresholding(FIST) and two step iterative shrinkage thresholding (TWIST) in convergence speed. Therefore, we proposed to adopt SALSA to solve the subproblems. Moreover, in order to solve magnetic resonance image reconstruction problems with linear combinations of total variation, L1 norm and wavelet tree structure, we can split the original problem into three subproblems in the same manner, which can be processed by existing iteration scheme. A great deal of experimental results show that the proposed methods can effectively reconstruct the original image. Compared with existing algorithms such as TVCMRI, RecPF, CSA, FCSA and WaTMRI, the proposed methods have greatly improved the quality of the reconstructed images and have better visual effect. 展开更多
关键词 magnetic resonance imaging (MRI) compressed sensing (CS) splitaugmented lagrangian total variation(TV) norm L1 norm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部