针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭...针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭代数值求解过程。在该模型中,首先,计算出图像局部方向的角度矩阵。然后,构造与图像纹理方向一致的椭圆区域代替TV模型的圆形区域。最后,通过优化最小化算法迭代求解以获得去噪后图像。通过对比实验证明,本文提出的模型取得了更高的峰值信噪比,去噪过程中更好地增强了图像的细节信息。展开更多
文摘针对全变分模型(total variation,TV)以图像的梯度信息作为去噪的尺度参数,未考虑图像局部纹理的方向性的缺点,提出了一种基于图像局部方向特性的自适应全变分去噪模型(Adaptive directional total variation,ADTV),并推导出该模型的迭代数值求解过程。在该模型中,首先,计算出图像局部方向的角度矩阵。然后,构造与图像纹理方向一致的椭圆区域代替TV模型的圆形区域。最后,通过优化最小化算法迭代求解以获得去噪后图像。通过对比实验证明,本文提出的模型取得了更高的峰值信噪比,去噪过程中更好地增强了图像的细节信息。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60672135)陕西省教育厅资助科研课题(the Re- search Project of Department of Education of Shaanxi ProvinceChina under Grant No.07JK180)