Haze scatters light transmitted in the air and reduces the visibility of images.Dealing with haze is still a challenge for image processing applications nowadays.For the purpose of haze removal,we propose an accelerat...Haze scatters light transmitted in the air and reduces the visibility of images.Dealing with haze is still a challenge for image processing applications nowadays.For the purpose of haze removal,we propose an accelerated dehazing method based on single pixels.Unlike other methods based on regions,our method estimates the transmission map and atmospheric light for each pixel independently,so that all parameters can be evaluated in one traverse,which is a key to acceleration.Then,the transmission map is bilaterally filtered to restore the relationship between pixels.After restoration via the linear hazy model,the restored images are tuned to improve the contrast,value,and saturation,in particular to offset the intensity errors in different channels caused by the corresponding wavelengths.The experimental results demonstrate that the proposed dehazing method outperforms the state-of-the-art dehazing methods in terms of processing speed.Comparisons with other dehazing methods and quantitative criteria(peak signal-to-noise ratio,detectable marginal rate,and information entropy difference)are introduced to verify its performance.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.U1664264 and U1509203)
文摘Haze scatters light transmitted in the air and reduces the visibility of images.Dealing with haze is still a challenge for image processing applications nowadays.For the purpose of haze removal,we propose an accelerated dehazing method based on single pixels.Unlike other methods based on regions,our method estimates the transmission map and atmospheric light for each pixel independently,so that all parameters can be evaluated in one traverse,which is a key to acceleration.Then,the transmission map is bilaterally filtered to restore the relationship between pixels.After restoration via the linear hazy model,the restored images are tuned to improve the contrast,value,and saturation,in particular to offset the intensity errors in different channels caused by the corresponding wavelengths.The experimental results demonstrate that the proposed dehazing method outperforms the state-of-the-art dehazing methods in terms of processing speed.Comparisons with other dehazing methods and quantitative criteria(peak signal-to-noise ratio,detectable marginal rate,and information entropy difference)are introduced to verify its performance.