期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于PCA-SIFT特征匹配的图像拼接算法 被引量:10
1
作者 蒋波 翟旭平 《计算机应用》 CSCD 北大核心 2016年第A02期143-145,159,共4页
针对传统基于尺度不变特征变换(SIFT)的特征匹配图像拼接算法中数据量过大、耗时较长的问题,提出一种基于主成分不变特征变换(PCA-SIFT)的图像拼接方法。该方法使用主成分分析(PCA)法减少了传统SIFT特征描述符的维数,降低了特征... 针对传统基于尺度不变特征变换(SIFT)的特征匹配图像拼接算法中数据量过大、耗时较长的问题,提出一种基于主成分不变特征变换(PCA-SIFT)的图像拼接方法。该方法使用主成分分析(PCA)法减少了传统SIFT特征描述符的维数,降低了特征点描述符数据复杂度。在提取PCA-SIFT特征的基础上,利用最近邻近算法建立特征点对之间的初次匹配,采用具有鲁棒性的随机抽样一致性算法(RANSAC)去除错误匹配,最后运用渐入渐出加权融合算法进行图像融合。40组拼接仿真实验中,图像拼接速度相较于传统的基于SIFT算法提高了46%~49%。实验结果表明,该方法在保证具有良好的拼接质量的前提下,提高了图像拼接速度。 展开更多
关键词 图像拼接 尺度不特征 成分分析 随机抽样一致性算法 图像融合
下载PDF
一种改进的SIFT-PCA算法在图像检索中的应用 被引量:5
2
作者 秦雪 侯进 《西南科技大学学报》 CAS 2011年第4期65-70,共6页
针对SIFT算法(尺度不变特征)提取出的图像特征点向量维数较多造成计算量较大、检索效率低等问题,提出一种SIFT和改进的主成分分析(Principal Component Analysis,PCA)相结合的SIFT-PCA算法。该算法首先采用SIFT算法提取图像特征点向量,... 针对SIFT算法(尺度不变特征)提取出的图像特征点向量维数较多造成计算量较大、检索效率低等问题,提出一种SIFT和改进的主成分分析(Principal Component Analysis,PCA)相结合的SIFT-PCA算法。该算法首先采用SIFT算法提取图像特征点向量,然后利用改进的PCA算法把特征点向量变换到另一个空间,得到最具有代表性的特征参数,实现对特征点向量的降维。此算法在保证原SIFT算法鲁棒性的同时减少了计算量,增强了实时性。实验结果说明了该算法具有尺度、平移、旋转、光照不变性,在图像检索中应用切实可行且效果良好。 展开更多
关键词 图像检索sift算法(尺度不特征)pca算法(成分分析)
下载PDF
一种改进PCA-SIFT和粒子群优化的图像匹配算法 被引量:5
3
作者 杨友良 王梓任 马翠红 《激光杂志》 北大核心 2019年第12期53-57,共5页
图像匹配里传统的尺度不变特征变换(SIFT)因为存在数量与维数相对较多,导致出现计算量大匹配时间长的问题。故提出了一种基于PCA-SIFT的改进算法。该算法采用了一种圆形描述符对SIFT降维,同时利用主成分分析(PCA)法对描述符进一步降维,... 图像匹配里传统的尺度不变特征变换(SIFT)因为存在数量与维数相对较多,导致出现计算量大匹配时间长的问题。故提出了一种基于PCA-SIFT的改进算法。该算法采用了一种圆形描述符对SIFT降维,同时利用主成分分析(PCA)法对描述符进一步降维,以此来减少描述符的维度带来的大量数据;在匹配时通过分层粒子群算法优化欧式距离与余弦相似度函数,根据粒子的差异性进行分阶层处理,寻找函数的极值,以此找到匹配点;通过实验对比发现特征点减少了5%~10%,时间也相对减少,改进的PCA-SIFT匹配算法可以有效地提升匹配的准确率。 展开更多
关键词 尺度不特征 成分分析 分层粒子群算法 粒子差异性 图像匹配
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部