The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and th...This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.展开更多
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines...Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.展开更多
Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the aut...Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.展开更多
The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diamete...The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diameters of D = 0.33T, 0.40T and 0.50T, respectively. The multi-block and 360° ensemble-averaged approaches were used to measure the radial and axial angle-resolved velocity distributions. Three typical flow patterns, named, merging flow, parallel flow and diverging flow, were obtained by changing the clearance of the bottom impeller above the tank base (C1) and the spacing between the two impellers (C2). The results show that while C1 is equal to D, the parallel flow occurs as C2≥0.40T, C2≥0.38T and C2≥0.32T and the merging flow occurs as C2≤0.38T, C2≤0.36T and C2≤0.27T for the impellers with diameter of D=0.33T, 0.40T and 0.50T, respectively. When C2 is equal to D, the diverging flow occurs in the value of C1≤0.15T for all three impellers. The flow numbers of these impellers were calculated for the parallel flow. Trailing vortices generated by the lower impeller for the diverging flow were shown by the 10° angle-resolved velocity measurements. The peak value of turbulence kinetic energy ( k/V^2tip = 0.12-0.15 or above) appears along the center of the impeller discharging stream.展开更多
Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impeller...Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.展开更多
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream d...In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.展开更多
A self-developed laser image measurement system was established to study the behavior of bubble for- mation at a single orifice in non-Newtonian polyacrylamide(PAAm)solutions.Images of bubbles were captured by a CCD c...A self-developed laser image measurement system was established to study the behavior of bubble for- mation at a single orifice in non-Newtonian polyacrylamide(PAAm)solutions.Images of bubbles were captured by a CCD camera and volumes of bubbles were digitally analyzed online.The effects of rheological property of PAAm solution,orifice,reservoir,and gas flowrate on bubble formation were studied experimentally.It is found that the volume of bubble increases with the concentration of PAAm solution,the diameter of the orifice,and the gas flowrate,respectively,whereas little effect of reservoir is observed in experiments.展开更多
A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of...A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received cons...Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.展开更多
Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixin...Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.展开更多
In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns w...In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.展开更多
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate t...The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.展开更多
Leeward of natural elevations, like mountains and hills, the air flow becomes turbulent and often times damaging and hazardous to aviation and downwind populations. There is currently a trend for massive construction ...Leeward of natural elevations, like mountains and hills, the air flow becomes turbulent and often times damaging and hazardous to aviation and downwind populations. There is currently a trend for massive construction projects, the result of which are megastructures that behave similarly to these natural elevations and create analogous turbulence conditions. Examples five mega projects were analyzed, and it was estimated that the Reynolds number variation in these buildings, is from 6.10g and 7.109, for winds between 10 m/s and 50 m/s. In this work, the authors present a first numerical approach to this phenomenon by calculating the Strouhal numbers induced by winds blowing against large-volume bodies, in the range of high Reynolds numbers. For this study, satellite images depicting von K^irm^n cloud streets leeward of isolated islands were used. The methodology employed was based on a satellite image where streets watch von K^rnfin vortex, from NOAA-ARL (National Oceanic and Atmospheric Administration-Air Resource Laboratory) prognosis was obtained for a grid point near the island, then determined the inversion layer and meteorological data (wind, temperature and pressure), was measured from the satellite image the distances separating the vortices to calculate the period, the Reynolds number and Strouhal. The studied results of the cases are displayed graphically, where it is possible to observe a data dispersion as well as a rising trend of the Strouhal number as the Reynolds number increases.展开更多
This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding pa...This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding particles for feeding the flow when measuring by PIV (Particle Image Velocimetry) method. The aim of the paper is to provide comprehensible instruction for choosing the proper type of seeding particles with regard to the flow characteristics and required measurement accuracy. The paper presents two methods with the help of which it is possible to determine the seeding particles' ability to follow the flow field. The first method is based on the direct calculation of the phase lag and amplitude ratio between the particle and the fluid. The calculation is based on solution of the BBO (Basset Boussinesq Oseen) equation for spherical particle. The other method results from the calculation of the particle time response, which defines the maximum frequency of disturbances, which are to be followed by the particle. In the conclusion, the method of choosing the seeding particles is proposed, depending on the required measurement accuracy.展开更多
In this paper, experimental results are reported about, especially, effect of turbulence in airflow-mixture in HVAC (heating, ventilating, air-conditioning) unit. A flow channel in this study has same characters as ...In this paper, experimental results are reported about, especially, effect of turbulence in airflow-mixture in HVAC (heating, ventilating, air-conditioning) unit. A flow channel in this study has same characters as actual HVAC unit, such as bent rectangular duct, a heater unit and a flow control door. The experiment was carried out to obtain verification data for analysis by using PIV (particle image velocimetry) system. Moreover, temperature map in the channel was also obtained by using thermocouples. Reynolds number is set to 12800. As a result of this study, representative velocity distributions and Reynolds stress distributions were obtained. It was found that stress value is quite high (maximum 1.4) by preliminary turbulence and mixture in the duct. In addition, it was also found that temperature diffusion is promoted by mixing around door.展开更多
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.
基金Projects(51705446,51890881) supported by the National Natural Science Foundation of China
文摘This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 41176074, 51379043 and 51409063)Acknowledgement This project was supported by the National Natural Science Foundation of China (Grant Nos. 41176074,51379043 and 51409063) and was conducted in response to the great support received from a basic research project entitled "Multihull Ship Technology Key Laboratory of Fundamental Science for National Defence", which was conducted at Harbin Engineering University. The authors would like to extend their sincere gratitude to their colleagues in the towing tank laboratory.
文摘Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.
基金Supported by the National Natural Science Foundation of China (20776008)and the National Basic Research Program of China (2007CB714300).
文摘The flow fields in a dual Rushton impeller stirred tank with diameter of 0.48 m (T) were measured by using Particle Image Velocimetry (PIV). Three different size impellers were used in the experiments with diameters of D = 0.33T, 0.40T and 0.50T, respectively. The multi-block and 360° ensemble-averaged approaches were used to measure the radial and axial angle-resolved velocity distributions. Three typical flow patterns, named, merging flow, parallel flow and diverging flow, were obtained by changing the clearance of the bottom impeller above the tank base (C1) and the spacing between the two impellers (C2). The results show that while C1 is equal to D, the parallel flow occurs as C2≥0.40T, C2≥0.38T and C2≥0.32T and the merging flow occurs as C2≤0.38T, C2≤0.36T and C2≤0.27T for the impellers with diameter of D=0.33T, 0.40T and 0.50T, respectively. When C2 is equal to D, the diverging flow occurs in the value of C1≤0.15T for all three impellers. The flow numbers of these impellers were calculated for the parallel flow. Trailing vortices generated by the lower impeller for the diverging flow were shown by the 10° angle-resolved velocity measurements. The peak value of turbulence kinetic energy ( k/V^2tip = 0.12-0.15 or above) appears along the center of the impeller discharging stream.
基金Supported by the National Natural Science Foundation of China (20776008, 20821004) and the National Basic Research Program of China (2007CB714300).
文摘Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14E090009State Key Laboratory of Satellite Ocean Environment Dynamics (Second Institute of Oceanography, SOA), State Key Laboratory of Fluid Power Transmission and Control (GZKF-201310)+1 种基金State Key Laboratory of Ocean Engineering, China. The National Research Foundation of Singapore (NRF-CRP5-2009-01)Maritime Research Centre and Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, is acknowledged
文摘In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique(PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wakeshedding at small spacing ratio, bi-stable flow behavior(alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.
基金Supported by the National Natural Science Foundation of China (No.20476073) and the Programs of Introducing Talents of Discipline to Universities (Grant No.B06006).
文摘A self-developed laser image measurement system was established to study the behavior of bubble for- mation at a single orifice in non-Newtonian polyacrylamide(PAAm)solutions.Images of bubbles were captured by a CCD camera and volumes of bubbles were digitally analyzed online.The effects of rheological property of PAAm solution,orifice,reservoir,and gas flowrate on bubble formation were studied experimentally.It is found that the volume of bubble increases with the concentration of PAAm solution,the diameter of the orifice,and the gas flowrate,respectively,whereas little effect of reservoir is observed in experiments.
基金Supported by the Graduate Innovation Foundation of Shanxi Province of China(2015BY44)
文摘A novel reactor that achieves rapid liquid–liquid mixing via free triple-impinging jets(FTIJs) is developed to improve mixing efficiency at unequal flow rates for liquid–liquid reactions. The flow characteristics of FTIJs were investigated using particle image velocimetry(PIV). The instantaneous and mean velocities data at different Reynolds numbers(Re) were analyzed to provide insights into the velocity distributions in FTIJs. The effect of jet spacing on the stagnation points, instantaneous velocity, mean velocity, profiles of the x- and ycomponents of mean velocity, and turbulent kinetic energy(TKE) distributions of FTIJs were investigated at Re = 4100 with a volumetric flow rate ratio of 0.5. The characteristics of the turbulent flows are similar for all jet spacings tested. Two stagnation points are observed, which are independent of jet spacing and are not located in the center of the flow field. However, velocity and TKE distributions are strongly dependent on the jet spacing.Decreasing jet spacing increases the expansion angle and the values of TKE, leading to strong turbulence, improving momentum transfer and mixing efficiency in FTIJs. The present study shows that optimization of the operating parameters is helpful for designing FTIJs.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2010-013-D00007)2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Shell-and-tube vaporizers are the most commonly used and dominated types of vaporizers in liquefied natural gas (LNG) realm. Due to efficient performance, shell-side flow in this type of vaporizers has received considerable attention and has been investigated extensively. However, the detailed flow structure in the shell needs to be determined for reliable and effective design. Therefore, the objective of this study was to clarify the flow structure in shell by particle image velocimetry (PIV). Experiments were conducted using two types of model; 15% baffle cut having inlet and outlet positions !n the direction of 90° to the cut and 30% baffle cut having inlet and outlet positions in the direction of 180° to the cut. Each test section is 169 mm in inner diameter and 344.6 mm in length. The flow features were characterized in different baffle cuts with regards to the velocity vector field and velocity distribution. The results show that the flow characteristics of 15% baffle cut type vaporizer are comparable to those of 30% baffle cut type vaporizer.
基金supported by the National Natural Science Foundation of China (Nos. 40906001 and 40906099)National 863 High-Tech Program (No. 2008AA09A402)Chinese National Science & Technology Supporting Program (No. 2011BAC03B02-03-02)
文摘Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.
文摘In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.
基金Supported by the National Natural Science Foundation of China (21076139)the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B03)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.
文摘Leeward of natural elevations, like mountains and hills, the air flow becomes turbulent and often times damaging and hazardous to aviation and downwind populations. There is currently a trend for massive construction projects, the result of which are megastructures that behave similarly to these natural elevations and create analogous turbulence conditions. Examples five mega projects were analyzed, and it was estimated that the Reynolds number variation in these buildings, is from 6.10g and 7.109, for winds between 10 m/s and 50 m/s. In this work, the authors present a first numerical approach to this phenomenon by calculating the Strouhal numbers induced by winds blowing against large-volume bodies, in the range of high Reynolds numbers. For this study, satellite images depicting von K^irm^n cloud streets leeward of isolated islands were used. The methodology employed was based on a satellite image where streets watch von K^rnfin vortex, from NOAA-ARL (National Oceanic and Atmospheric Administration-Air Resource Laboratory) prognosis was obtained for a grid point near the island, then determined the inversion layer and meteorological data (wind, temperature and pressure), was measured from the satellite image the distances separating the vortices to calculate the period, the Reynolds number and Strouhal. The studied results of the cases are displayed graphically, where it is possible to observe a data dispersion as well as a rising trend of the Strouhal number as the Reynolds number increases.
文摘This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding particles for feeding the flow when measuring by PIV (Particle Image Velocimetry) method. The aim of the paper is to provide comprehensible instruction for choosing the proper type of seeding particles with regard to the flow characteristics and required measurement accuracy. The paper presents two methods with the help of which it is possible to determine the seeding particles' ability to follow the flow field. The first method is based on the direct calculation of the phase lag and amplitude ratio between the particle and the fluid. The calculation is based on solution of the BBO (Basset Boussinesq Oseen) equation for spherical particle. The other method results from the calculation of the particle time response, which defines the maximum frequency of disturbances, which are to be followed by the particle. In the conclusion, the method of choosing the seeding particles is proposed, depending on the required measurement accuracy.
文摘In this paper, experimental results are reported about, especially, effect of turbulence in airflow-mixture in HVAC (heating, ventilating, air-conditioning) unit. A flow channel in this study has same characters as actual HVAC unit, such as bent rectangular duct, a heater unit and a flow control door. The experiment was carried out to obtain verification data for analysis by using PIV (particle image velocimetry) system. Moreover, temperature map in the channel was also obtained by using thermocouples. Reynolds number is set to 12800. As a result of this study, representative velocity distributions and Reynolds stress distributions were obtained. It was found that stress value is quite high (maximum 1.4) by preliminary turbulence and mixture in the duct. In addition, it was also found that temperature diffusion is promoted by mixing around door.