在地面实验中,使用粒子图像测速测温(Particle Image Velocimetry and Thermometry,PIVT)技术测量了单滴热毛细迁移时液滴周围同时刻的速度场和温度场。选用密度相近的豆油和硅油作为实验系统的母液和液滴。实验结果表明单滴周围的温度...在地面实验中,使用粒子图像测速测温(Particle Image Velocimetry and Thermometry,PIVT)技术测量了单滴热毛细迁移时液滴周围同时刻的速度场和温度场。选用密度相近的豆油和硅油作为实验系统的母液和液滴。实验结果表明单滴周围的温度场扰动不同于线性理论预测的随到液滴距离的平方成反比,而是距离一次方成反比,这是由于重力引起的浮力效应造成的,地面实验中重力作用不能忽略。展开更多
The gray level values of target pixels of infrared images processed by the SUSAN noise filtering algorithm and the background filtering algorithm are calculated,assuming that the target distance is given in image acqu...The gray level values of target pixels of infrared images processed by the SUSAN noise filtering algorithm and the background filtering algorithm are calculated,assuming that the target distance is given in image acquisition.The equivalent blackbody temperature is obtained by the temperature calibration model that represents the quantitative relation,at a certain integration time,between the gray level value and the equivalent blackbody temperature.The temperature calibration model has been acquired by the curve fitting with the experimental data of blackbody temperature calibration using Origin 6.0.Then the target radiance can be determined by the radiant flux equivalence model built on condition that the target radiant flux received by the infrared detector is equivalent to that of the blackbody placed in front of the infrared detector at a close distance.This measuring method is based on the temperature calibration parameters and real image information,so it can avoid subjectivity of the traditional theory modeling methods.展开更多
It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant t...It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.展开更多
From observing cores of 18 wells,identifying 175 ordinary thin sections and 61 thin casting sections,energy spectrum analyses of 37 samples,homogenization temperature measurement of fluid inclusions of 11 samples,we d...From observing cores of 18 wells,identifying 175 ordinary thin sections and 61 thin casting sections,energy spectrum analyses of 37 samples,homogenization temperature measurement of fluid inclusions of 11 samples,we determine the types of diagenesis and pores of the Fuyu oil reservoir in the north Qijia region.We classified the pores and measured their plane porosity using CIA 2000,the software of rock image analysis,calculated the effect of different kinds of diagenesis on porosity,studied the controlling actions of diagenesis to pore evolution quantitatively,combined with burial history,thermal history and their diagenetic environments.Our results show that mechanical compaction and carbonate cementation are the major destructive diagenesed,developed during early diagenesis stages.The reduction in porosity by mechanical compaction and carbonate cementation are about 25% and 8%,while the destructive intensity of siliceous cementation and clay mineral cementation is relatively much smaller,i.e.,the reduction of porosity is about 2% and 0.2% Dissolution is constructive diagenesis,the increment of porosity is about 6%.There are four diagenesis evolution stages,during which the porosity reduced from 30%~38% to 2%~20%.Mechanical compaction and early cementation are the main diageneses in the early diagenesis stages,when porosity was reduced to 2%~10%.Dissolution is the main diagenesis of an A I substage of the middle diagenesis stage,when porosity increased 1%~8%.The dissolution of the A Ⅱ substage of the middle diagenesis stage affected by late cementation,raised porosity 1%~5%.The porosity varied slightly during the middle stage B.展开更多
文摘在地面实验中,使用粒子图像测速测温(Particle Image Velocimetry and Thermometry,PIVT)技术测量了单滴热毛细迁移时液滴周围同时刻的速度场和温度场。选用密度相近的豆油和硅油作为实验系统的母液和液滴。实验结果表明单滴周围的温度场扰动不同于线性理论预测的随到液滴距离的平方成反比,而是距离一次方成反比,这是由于重力引起的浮力效应造成的,地面实验中重力作用不能忽略。
基金Supported by Innovation Project of Chinese Academy of Sciences(Grant No.C04708Z)
文摘The gray level values of target pixels of infrared images processed by the SUSAN noise filtering algorithm and the background filtering algorithm are calculated,assuming that the target distance is given in image acquisition.The equivalent blackbody temperature is obtained by the temperature calibration model that represents the quantitative relation,at a certain integration time,between the gray level value and the equivalent blackbody temperature.The temperature calibration model has been acquired by the curve fitting with the experimental data of blackbody temperature calibration using Origin 6.0.Then the target radiance can be determined by the radiant flux equivalence model built on condition that the target radiant flux received by the infrared detector is equivalent to that of the blackbody placed in front of the infrared detector at a close distance.This measuring method is based on the temperature calibration parameters and real image information,so it can avoid subjectivity of the traditional theory modeling methods.
文摘It is well known that optical tomography can accurately and quantitatively reconstruct the refractive index field of a transparent medium and display the three dimensional image of other physical quantities relevant to temperature or density. In this paper, a new multidirectional holographic interferometric system is built, and two kinds of image reconstruction algorithms are introduced and an automatic image processing system of interferogram is designed. A three dimentsional asymmetric gas flow field above a combustor is expertmentally investigated with holographic interferometry. The reconstructed temperatures are similar to those measured with a thermocouple.
基金the National Basic Research Program of China (No.2009 CB219306)the Important National Science & Technology Specific Projects (No.2009GYXQ14)
文摘From observing cores of 18 wells,identifying 175 ordinary thin sections and 61 thin casting sections,energy spectrum analyses of 37 samples,homogenization temperature measurement of fluid inclusions of 11 samples,we determine the types of diagenesis and pores of the Fuyu oil reservoir in the north Qijia region.We classified the pores and measured their plane porosity using CIA 2000,the software of rock image analysis,calculated the effect of different kinds of diagenesis on porosity,studied the controlling actions of diagenesis to pore evolution quantitatively,combined with burial history,thermal history and their diagenetic environments.Our results show that mechanical compaction and carbonate cementation are the major destructive diagenesed,developed during early diagenesis stages.The reduction in porosity by mechanical compaction and carbonate cementation are about 25% and 8%,while the destructive intensity of siliceous cementation and clay mineral cementation is relatively much smaller,i.e.,the reduction of porosity is about 2% and 0.2% Dissolution is constructive diagenesis,the increment of porosity is about 6%.There are four diagenesis evolution stages,during which the porosity reduced from 30%~38% to 2%~20%.Mechanical compaction and early cementation are the main diageneses in the early diagenesis stages,when porosity was reduced to 2%~10%.Dissolution is the main diagenesis of an A I substage of the middle diagenesis stage,when porosity increased 1%~8%.The dissolution of the A Ⅱ substage of the middle diagenesis stage affected by late cementation,raised porosity 1%~5%.The porosity varied slightly during the middle stage B.