期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于视觉词典的多目标截面投影图像特征分割 被引量:2
1
作者 陈卓然 丛飚 张会萍 《计算机仿真》 北大核心 2020年第6期347-351,共5页
由于传统截面投影图像特征分割方法存在噪声免疫力低、适用广泛性窄和分割表现力差等诸多问题,因此提出一种基于视觉词典的多目标截面投影图像特征分割。使用k-means法完成聚类并利用贪婪法融合结果形成视觉词典,通过构建三维直方图,将... 由于传统截面投影图像特征分割方法存在噪声免疫力低、适用广泛性窄和分割表现力差等诸多问题,因此提出一种基于视觉词典的多目标截面投影图像特征分割。使用k-means法完成聚类并利用贪婪法融合结果形成视觉词典,通过构建三维直方图,将像素点投影到主斜线上获得基本极大类间方差准则,实现像素与像素间的分类,同时为了增强噪声免疫力将阈值转化成可以变化的数值,通过峰值信噪比的最大比率对阈值合理取值,完成多目标截面投影图像特征分割。通过仿真可知,合理的阈值能够有效降低图像像素的错分,使图像特征分割更加精准,且不计附带的噪音种类,与其它方法对比发现,所提方法不仅噪声免疫力强且适用范围广,分割效果极佳。 展开更多
关键词 视觉词典 截面投影 图像特征分割 噪声免疫力
下载PDF
基于数据挖掘的图像特征分割技术 被引量:6
2
作者 李凯勇 《现代电子技术》 北大核心 2020年第15期60-64,共5页
针对当前图像特征分割技术分割复杂多样图像时存在精度较低的问题,引入数据挖掘理念,研究了一种新的图像特征分割技术。使用K-means聚类算法进行聚类处理,依次使用柔化处理、中值滤波处理和锐化处理后,实现图像去噪。通过分析预处理图... 针对当前图像特征分割技术分割复杂多样图像时存在精度较低的问题,引入数据挖掘理念,研究了一种新的图像特征分割技术。使用K-means聚类算法进行聚类处理,依次使用柔化处理、中值滤波处理和锐化处理后,实现图像去噪。通过分析预处理图像获得白色线剖面图,根据数据挖掘确定图像中的目标颜色R/B值和背景颜色R/B值,在灰度共生矩阵中获得描述参量,对比对比度、熵、相关性和能量,实现纹理特征提取,由此完成复杂多样图像的高精度分割。分别对模拟图像和遥感图像进行分割实验,与传统分割结果进行对比,从定性和定量两个角度验证基于数据挖掘的图像特征分割技术的有效性,结果表明,基于数据挖掘的图像特征分割技术能够获得更全面的图像信息和纹理细节,从而更加精准地分割出同质区域。 展开更多
关键词 图像特征分割 数据挖掘 图像去噪 图像处理 颜色特征 纹理特征提取
下载PDF
基于MEAN-SHIFT和SVM的血细胞图像分割 被引量:8
3
作者 潘晨 闫相国 郑崇勋 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第z3期467-472,共6页
提出一种新的血细胞图像分割算法,结合无监督和有监督模式识别技术,利用颜色快速提取感兴趣的有核细胞。首先通过mean- shift过程寻找RGB颜色空间中的细胞核、红细胞和背景聚类峰(局部密度最大区域) ,其中的细胞核图像区域经过适当形态... 提出一种新的血细胞图像分割算法,结合无监督和有监督模式识别技术,利用颜色快速提取感兴趣的有核细胞。首先通过mean- shift过程寻找RGB颜色空间中的细胞核、红细胞和背景聚类峰(局部密度最大区域) ,其中的细胞核图像区域经过适当形态学膨胀后可以得到部分胞浆像素;然后细胞核聚类峰和部分胞浆颜色组成正特征子集,而红细胞和背景聚类峰附近颜色组成负特征子集,训练一个两分类SVM,得到的分类模型随后对图像的颜色空间向量分类,实现细胞区域整体提取。通过颜色量化手段,能够显著减少训练集的颜色向量数量,实现SVM实时训练和分类。借助于m ean- shift鲁棒的特征空间分析性能和SVM出色的小样本学习推广能力,该方法对图像颜色变化、染色条件差异等鲁棒性强,无过度分割现象,分割速度和效果均优于流域变换方法。骨髓和外周血涂片的分割试验证明了方法的有效性,已应用于实际图像处理系统。 展开更多
关键词 均值移动 mean-shift、支持向量机 SVM 彩色图像分割特征空间、血细胞
下载PDF
基于似物性判别的视觉目标检测方法 被引量:4
4
作者 毛玉仁 郭松 +1 位作者 郑阳明 林华 《传感器与微系统》 CSCD 2017年第11期147-150,共4页
提出了一种基于似物性判定理论的单图像视觉目标检测算法。在组合几何学的引导下遴选候选图像窗口;应用创新提出的基于图像分割的结构化特征结合支持向量机对候选窗口的似物性进行评分;根据评分对候选窗口进行排序遴选。在PASCAL VOC200... 提出了一种基于似物性判定理论的单图像视觉目标检测算法。在组合几何学的引导下遴选候选图像窗口;应用创新提出的基于图像分割的结构化特征结合支持向量机对候选窗口的似物性进行评分;根据评分对候选窗口进行排序遴选。在PASCAL VOC2007数据集上进行了定量验证,结果表明:当候选集容量为1 000时,算法可达到96.1%的召回率。检测性能优于目标识别领域的4种经典算法。 展开更多
关键词 目标检测 似物性判定 基于图像分割的结构化特征
下载PDF
An image retrieval system based on fractal dimension 被引量:1
5
作者 姚敏 易文晟 +1 位作者 沈斌 DAIHong-hua 《Journal of Zhejiang University Science》 CSCD 2003年第4期421-425,共5页
This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree structure image database. After prep... This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree structure image database. After preprocessing and feature extracting, a given image is matched with the standard images in the image database using a hierarchical method of image indexing. 展开更多
关键词 Fractal dimension Image partition Feature extraction Image retrieval
下载PDF
Intelligent detection method for workpiece defect based on industrial CT image 被引量:1
6
作者 ZHANG Rui-ping SHI Jia-yue +2 位作者 GOU Jun-nian DONG Hai-ying AN Mei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期299-306,共8页
In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima... In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry. 展开更多
关键词 industrial computed tomography (CT) defect detection image segmentation feature extraction intelligent identification
下载PDF
Segmentation of High Spatial Resolution Remote Sensing Images of Mountainous Areas Based on the Improved Mean Shift Algorithm 被引量:3
7
作者 LU Heng LIU Chao +1 位作者 LI Nai-wen GUO Jia-wei 《Journal of Mountain Science》 SCIE CSCD 2015年第3期671-681,共11页
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p... Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation. 展开更多
关键词 Mean Shift Image segmentation Regionmerging UAV image Quickbird image
下载PDF
Self-Organizing Maps in Seismic Image Segmentation
8
作者 Carlos Ramirez Miguel Argaez +1 位作者 Pablo Guiilen Gladys Gonzalez 《Computer Technology and Application》 2012年第9期624-629,共6页
Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysi... Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysis can be extremely large is seismic interpretation for hydrocarbon exploration. In order to assist the interpreter in identifying characteristics of interest confined in the seismic data, the authors present a set of data attributes that can be used to train a SOM in such a way that zones of interest can be automatically identified or segmented, reducing time in the interpretation process. The authors show how to associate SOM to 2D color maps to visually identify the clustering structure of the input seismic data, and apply the proposed technique to a 2D synthetic seismic dataset of salt structures. 展开更多
关键词 Self-organizing maps image segmentation seismic attributes.
下载PDF
Semantic image segmentation with fused CNN features 被引量:2
9
作者 耿慧强 张桦 +3 位作者 薛彦兵 周冕 徐光平 高赞 《Optoelectronics Letters》 EI 2017年第5期381-385,共5页
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neur... Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network(CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field(CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively. 展开更多
关键词 Neural networks PIXELS Random processes SEMANTICS
原文传递
Comparative study on the performance of textural image features for active contour segmentation
10
作者 MORARU Luminita MOLDOVANU Simona 《Science China(Life Sciences)》 SCIE CAS 2012年第7期637-644,共8页
We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active con... We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard devia- tion textural feature and a 5x5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the con- trast-to-gradient method. The experiments showed promising segmentation results. 展开更多
关键词 active contour model image feature area error rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部