针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从...针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。展开更多
针对目前体积最大化端元提取技术存在提取精度低、计算复杂性高等问题,提出了结合遗传算法和体积最大化的端元提取方法(Extraction Method Based on Genetic Algorithm and Volume Maximization,EE-GAVM),以改进现有的端元提取技术。EE-...针对目前体积最大化端元提取技术存在提取精度低、计算复杂性高等问题,提出了结合遗传算法和体积最大化的端元提取方法(Extraction Method Based on Genetic Algorithm and Volume Maximization,EE-GAVM),以改进现有的端元提取技术。EE-GAVM方法通过寻找单纯形体积最大的像元向量集合来定位到端元集合,将端元提取问题表述为单一目标,节约计算资源的同时实现了精度的提高。实验结果表明:所提方法在性能和精度方面优于其他对比算法。展开更多
文摘针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。
文摘针对目前体积最大化端元提取技术存在提取精度低、计算复杂性高等问题,提出了结合遗传算法和体积最大化的端元提取方法(Extraction Method Based on Genetic Algorithm and Volume Maximization,EE-GAVM),以改进现有的端元提取技术。EE-GAVM方法通过寻找单纯形体积最大的像元向量集合来定位到端元集合,将端元提取问题表述为单一目标,节约计算资源的同时实现了精度的提高。实验结果表明:所提方法在性能和精度方面优于其他对比算法。