A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessor...A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.展开更多
Linear quadtree is a popular image representation method due to its convenient imaging procedure. However, the excessive emphasis on the symmetry of segmentation, i.e. dividing repeatedly a square into four equal sub-...Linear quadtree is a popular image representation method due to its convenient imaging procedure. However, the excessive emphasis on the symmetry of segmentation, i.e. dividing repeatedly a square into four equal sub-squares, makes linear quadtree not an optimal representation. In this paper, a no-loss image representation, referred to as Overlapped Rectangle Image Representation (ORIR), is presented to support fast image operations such as Legendre moments computation. The ORIR doesn’t importune the symmetry of segmentation, and it is capable of representing, by using an identical rectangle, the information of the pixels which are not even adjacent to each other in the sense of 4-neighbor and 8-neighbor. Hence, compared with the linear quadtree, the ORIR significantly reduces the number of rectangles required to represent an image. Based on the ORIR, an algorithm for exact Legendre moments computation is presented. The theoretical analysis and the experimental results show that the ORIR-based algorithm for exact Legendre moments computation is faster than the conventional exact algorithms.展开更多
文摘A hierarchical retrieval scheme of the accessory image database is proposed based on textile industrial accessory contour feature and region feature. At first smallest enclosed rectangle[1] feature (degree of accessory coordination) is used to filter the image database to decouple the image search scope. After the accessory contour information and region information are extracted, the fusion multi-feature of the centroid distance Fourier descriptor and distance distribution histogram is adopted to finish image retrieval accurately. All the features above are invariable under translation, scaling and rotation. Results from the test on the image database including 1,000 accessory images demonstrate that the method is effective and practical with high accuracy and fast speed.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA04Z211)
文摘Linear quadtree is a popular image representation method due to its convenient imaging procedure. However, the excessive emphasis on the symmetry of segmentation, i.e. dividing repeatedly a square into four equal sub-squares, makes linear quadtree not an optimal representation. In this paper, a no-loss image representation, referred to as Overlapped Rectangle Image Representation (ORIR), is presented to support fast image operations such as Legendre moments computation. The ORIR doesn’t importune the symmetry of segmentation, and it is capable of representing, by using an identical rectangle, the information of the pixels which are not even adjacent to each other in the sense of 4-neighbor and 8-neighbor. Hence, compared with the linear quadtree, the ORIR significantly reduces the number of rectangles required to represent an image. Based on the ORIR, an algorithm for exact Legendre moments computation is presented. The theoretical analysis and the experimental results show that the ORIR-based algorithm for exact Legendre moments computation is faster than the conventional exact algorithms.