期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
2维不相关鉴别矢量集算法 被引量:1
1
作者 林玉娥 顾国昌 刘海波 《中国图象图形学报》 CSCD 北大核心 2009年第5期944-949,共6页
在人脸识别算法中,已有的计算不相关鉴别矢量集的算法均是基于图像向量模型的,因而将遇到所谓的小样本问题,而且由于采用迭代求解方式,算法运算速度缓慢,为此提出了一种新的求取不相关鉴别矢量集的算法,即一种基于图像矩阵模型的2维不... 在人脸识别算法中,已有的计算不相关鉴别矢量集的算法均是基于图像向量模型的,因而将遇到所谓的小样本问题,而且由于采用迭代求解方式,算法运算速度缓慢,为此提出了一种新的求取不相关鉴别矢量集的算法,即一种基于图像矩阵模型的2维不相关鉴别矢量集算法。算法由于采用了图像矩阵模型,解决了小样本问题,通过对类内散布矩阵的白化变换,使得推广的2维线性鉴别分析模型具有类似的2维主成分分析模型的形式,从而将两种算法的模型有效地联系起来,进而可以非迭代地求得2维不相关鉴别矢量集,不但求解速度快且数值解稳定。在ORL和Yale人脸库上的实验结果表明,该算法不但减少了计算时间,同时也提高了识别率,为求解不相关鉴别矢量集提供了一个新的思路。 展开更多
关键词 2维不相关鉴别矢量集 图像矩阵模型 白化变换 散布矩阵 非迭代
下载PDF
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
2
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部