由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编...由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。展开更多
最小二乘支持向量回归(the least squares support vector regression,LS-SVR)算法因其回归拟合度高广泛应用于各领域中.以目标物在不同光源下采集的图像呈现出不同的颜色值,从而导致图像与目标物出现视觉上的偏差为研究对象,并以潘通...最小二乘支持向量回归(the least squares support vector regression,LS-SVR)算法因其回归拟合度高广泛应用于各领域中.以目标物在不同光源下采集的图像呈现出不同的颜色值,从而导致图像与目标物出现视觉上的偏差为研究对象,并以潘通色卡为参照,利用LSSVR算法,结合将RGB颜色空间到sRGB颜色空间的转换模型,对测试图像进行矫正处理.实验结果表明:与多项式回归相比,LS-SVR算法能取得更小的色差,且矫正后的图像更接近于目标图像.展开更多
文摘由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。
文摘最小二乘支持向量回归(the least squares support vector regression,LS-SVR)算法因其回归拟合度高广泛应用于各领域中.以目标物在不同光源下采集的图像呈现出不同的颜色值,从而导致图像与目标物出现视觉上的偏差为研究对象,并以潘通色卡为参照,利用LSSVR算法,结合将RGB颜色空间到sRGB颜色空间的转换模型,对测试图像进行矫正处理.实验结果表明:与多项式回归相比,LS-SVR算法能取得更小的色差,且矫正后的图像更接近于目标图像.