Image registration is the overlaying of two images of the same scene taken at different times or by different sensors. It is one of the essential steps in information processing in remote sensing. To attain a highly a...Image registration is the overlaying of two images of the same scene taken at different times or by different sensors. It is one of the essential steps in information processing in remote sensing. To attain a highly accurate, reliable and low computation cost in image registration a suitable and similarity metric and reduction in search data and search space is required. In this paper, the author shows that if the right bin size is chosen, mutual information can be more robust than correlation in the registration of multi-temporal images. The author also compares the sensitivity of mutual information and correlation to Gaussian and multiplicative speckle noise. The author investigates automatic subimage selection as a reduction in search data strategy. The author proposes a measure, called alienability, which shows the ability ofa subimage to provide reliable registration. Alternate subimage selection methods such as using gradient, entropy and variance are also investigated. The author furthermore looks into a search space strategy using a gradient approach to maximize mutual information and show our first results.展开更多
This paper presents the studies of the refining of IKONOS-2 RPC, the transform of the datum, the mode of the control point distribution and the method of IKONOS stereo triangulation, so that IKONOS imagery can be used...This paper presents the studies of the refining of IKONOS-2 RPC, the transform of the datum, the mode of the control point distribution and the method of IKONOS stereo triangulation, so that IKONOS imagery can be used to collect the precise geospatial data and produce the large scale map.The transform between the IKONOS-2 image space and the national coordinate system based on the RPC have been developed, and the results of block adjustment with various control schemes in a practical project near Himalayas have been examined and analysed. The encouraging results of high positioning accuracy have been obtained.展开更多
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p...Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.展开更多
Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on...Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on Spatio-Temporal Information (SBSTI) is proposed.The proceeding results demonstrate the good performance of the algorithm.展开更多
A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generat...A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.展开更多
We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channe...We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channel. The hairpins dynamic information is extracted by identifying their dominant frequencies and associated spatial structures. For this quasi-periodic data system, the resulting main Dynamic modes illustrate the different spatial structures associated with the wake vortex region and the near-wall region. By comparisons with proper orthogonal decomposition (POD), it can be concluded that the dynamic mode concentrates on a certain frequency component more effectively than the mode determined by POD. During the analysis, DMD has proven itself a robust and reliable algorithm to extract spatial-temporal coherent structures.展开更多
文摘Image registration is the overlaying of two images of the same scene taken at different times or by different sensors. It is one of the essential steps in information processing in remote sensing. To attain a highly accurate, reliable and low computation cost in image registration a suitable and similarity metric and reduction in search data and search space is required. In this paper, the author shows that if the right bin size is chosen, mutual information can be more robust than correlation in the registration of multi-temporal images. The author also compares the sensitivity of mutual information and correlation to Gaussian and multiplicative speckle noise. The author investigates automatic subimage selection as a reduction in search data strategy. The author proposes a measure, called alienability, which shows the ability ofa subimage to provide reliable registration. Alternate subimage selection methods such as using gradient, entropy and variance are also investigated. The author furthermore looks into a search space strategy using a gradient approach to maximize mutual information and show our first results.
基金Funded by the Western Region Transport Development Science and Technology Program (No.2002 318 0050).
文摘This paper presents the studies of the refining of IKONOS-2 RPC, the transform of the datum, the mode of the control point distribution and the method of IKONOS stereo triangulation, so that IKONOS imagery can be used to collect the precise geospatial data and produce the large scale map.The transform between the IKONOS-2 image space and the national coordinate system based on the RPC have been developed, and the results of block adjustment with various control schemes in a practical project near Himalayas have been examined and analysed. The encouraging results of high positioning accuracy have been obtained.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2013SCU11006)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying,Mapping and Geoinformation of China (Grant No.DM2014SC02)the Key Laboratory of Geospecial Information Technology,Ministry of Land and Resources of China (Grant No.KLGSIT201504)
文摘Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.
文摘Segmentation of semantic Video Object Planes (VOP's) from video sequence is a key to the standard MPEG-4 with content-based video coding. In this paper, the approach of automatic Segmentation of VOP's Based on Spatio-Temporal Information (SBSTI) is proposed.The proceeding results demonstrate the good performance of the algorithm.
基金Supported by the National Natural Science Foundation of China (Nos. 40771176, 40721001)
文摘A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘We present dynamic mode decomposition (DMD) for studying the hairpin vortices generated by hemisphere protuberance measured by two-dimensional (2D) time-resolved (TR) particle image velocimetry (PIV) in a water channel. The hairpins dynamic information is extracted by identifying their dominant frequencies and associated spatial structures. For this quasi-periodic data system, the resulting main Dynamic modes illustrate the different spatial structures associated with the wake vortex region and the near-wall region. By comparisons with proper orthogonal decomposition (POD), it can be concluded that the dynamic mode concentrates on a certain frequency component more effectively than the mode determined by POD. During the analysis, DMD has proven itself a robust and reliable algorithm to extract spatial-temporal coherent structures.