期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
一种面向图像线特征提取的改进投票域的张量投票算法 被引量:1
1
作者 王莉 苏李君 《河南理工大学学报(自然科学版)》 CAS 北大核心 2021年第1期133-137,共5页
张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征... 张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征信息。本文针对此问题,提出一种改进的具有迭代性的张量投票算法,它主要是对投票域进行迭代改进,使改进后的张量投票算法可以提取更为连续的显著线特征,且与传统的张量投票算法相比,本文算法既缩短了计算时间,又提取了更为连续的线特征图像。 展开更多
关键词 张量投票算法 投票域 迭代 图像线特征
下载PDF
基于线形特征谱线的遥感目标图像旋转和缩放配准 被引量:3
2
作者 谭勇 徐佩霞 徐守时 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第8期783-789,共7页
提出了一种基于图像的线形特征谱线的遥感目标图像旋转和缩放参数配准方法.实验表明,与采用基于Fourier-Mellin变换的图像配准方法相比,该方法能够显著地提高遥感目标图像的旋转和缩放参数配准精度.
关键词 图像配准 遥感目标图像 图像线特征线 RADON变换 FOURIER-MELLIN变换
下载PDF
基于线特征和控制点的可见光和SAR图像配准 被引量:9
3
作者 李映 崔杨杨 韩晓宇 《自动化学报》 EI CSCD 北大核心 2012年第12期1968-1974,共7页
以具有典型人造目标的可见光和SAR(Synthetic aperture radar)图像为研究对象,提出一种自适应多尺度快速Beamlet变换方法提取人造目标在可见光和SAR图像的共有特征—线特征,并基于线特征构造控制点,设计了一种基于控制点特征的匹配度函... 以具有典型人造目标的可见光和SAR(Synthetic aperture radar)图像为研究对象,提出一种自适应多尺度快速Beamlet变换方法提取人造目标在可见光和SAR图像的共有特征—线特征,并基于线特征构造控制点,设计了一种基于控制点特征的匹配度函数,采用基于特征一致的粗配准和基于控制点的精确配准方法,对待配准图像实现由粗到精的自动配准.实验表明,在可见光和SAR图像存在较大灰度差异、旋转和平移的情况下,该算法仍然能够精确配准图像. 展开更多
关键词 图像配准 控制点 线特征 自适应多尺度快速Beamlet变换 特征一致
下载PDF
牙X线特征图像边缘曲线提取的MATLAB实现 被引量:1
4
作者 马旭 《计算机与数字工程》 2010年第10期137-138,共2页
以X口腔线龋齿边缘图像为例,给出其边缘描述及曲线平滑处理的MATLAB函数。在边缘图像边沿平滑处理后,采用了简单的点扫描方式描述边缘函数tocurve(g,h,w),其中引入了边缘线宽度约定参数w,以保证生成函数f比较准确;采用了适当改进的移动... 以X口腔线龋齿边缘图像为例,给出其边缘描述及曲线平滑处理的MATLAB函数。在边缘图像边沿平滑处理后,采用了简单的点扫描方式描述边缘函数tocurve(g,h,w),其中引入了边缘线宽度约定参数w,以保证生成函数f比较准确;采用了适当改进的移动均值法,编制的平滑函数smooth_r(x,span,n)在对原函数头尾数据截断处理后,再按指定循环次数,进行了循环平滑处理。通过实验可知,采用上述函数处理医疗牙X线特征图像算法简洁,实用性强。 展开更多
关键词 X线特征图像 边缘描述函数 线平滑函数 MATLAB
下载PDF
基于线特征的影像与矢量的匹配 被引量:1
5
作者 林怡 张绍明 陈映鹰 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期598-603,共6页
为了保证影像线特征提取的结果与矢量数据的一致性,提出了基于对称小波断面检测法和基于最大类间方差(OTSU)分割的形态算子检测算法.对称小波断面检测法主要用于提取影像中地物的边缘线;基于OTSU分割的形态算子检测法主要用于提取影像... 为了保证影像线特征提取的结果与矢量数据的一致性,提出了基于对称小波断面检测法和基于最大类间方差(OTSU)分割的形态算子检测算法.对称小波断面检测法主要用于提取影像中地物的边缘线;基于OTSU分割的形态算子检测法主要用于提取影像中地物的中心线,为影像与矢量匹配提供基础.同时,针对地理信息系统(GIS)矢量数据极适合用线矩来描述的特点,研究了3个参数匹配的方法,这一方法中3个参数具有旋转不变性,能够得到可靠的匹配结果. 展开更多
关键词 图像线特征 边缘提取 图像分割 旋转不变矩 参数匹配
下载PDF
图像自动配准初始参数确定 被引量:2
6
作者 马恒 刘剑 倪景峰 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2007年第6期881-884,共4页
为了实现图像自动配准,需要确定初始变换参数,为此提出了图像特征线和图像特征圆的概念。以仿射变换作为图像配准变换模型,由Harris角点检测法确定图像特征点,由图像特征点求取图像特征线和图像特征圆,根据该特征线和特征圆详细推导了... 为了实现图像自动配准,需要确定初始变换参数,为此提出了图像特征线和图像特征圆的概念。以仿射变换作为图像配准变换模型,由Harris角点检测法确定图像特征点,由图像特征点求取图像特征线和图像特征圆,根据该特征线和特征圆详细推导了图像自动配准初始参数的确定算法。根据以上算法实现了图像自动配准,证明了该算法的有效性。 展开更多
关键词 图像自动配准 图像特征线 图像特征 变换参数
下载PDF
Application of Image Enhancement Techniques to Potential Field Data 被引量:6
7
作者 张丽莉 郝天珧 +1 位作者 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2005年第3期145-152,i0001,共9页
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec... In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement. 展开更多
关键词 image enhancement histogram equalization Radon transform and potential field data
下载PDF
Straight line feature based image distortion correction 被引量:1
8
作者 Zhang Haofeng Zhao Chunxia Lu Jianfeng Tang Zhenmin Yang Jingyu 《Engineering Sciences》 EI 2008年第2期83-86,96,共5页
An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion ... An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordination is not need to know, and the method is easy to implement. The experiment result shows its high accuracy. 展开更多
关键词 distortion correction straight line feature nonlinear least square multi-step optimization
下载PDF
A NOVEL SHIP WAKE DETECTION METHOD OF SAR IMAGES BASED ON FREQUENCY DOMAIN
9
作者 Liu Hao Zhu Minhui (Nat. Key Lab. of Microwave Imaging Tech., Inst. of Electron., Chinese Academy of Sci., Beijing 100080) 《Journal of Electronics(China)》 2003年第4期313-320,共8页
Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillanc... Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness. 展开更多
关键词 Image processing Linear feature detection Ship wake Synthetic Aperture Radar (SAR)
下载PDF
Multi-Embed Nonlinear Scale-Space for Image Trust Root Generation 被引量:1
10
作者 Lizhao Liu Wentu Gao +3 位作者 Jian Liu Huayi Yin Huarong Xu Shunzhi Zhu 《China Communications》 SCIE CSCD 2016年第11期170-179,共10页
An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dyna... An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dynamical and sustained authentication. This paper proposes a basic function of constructing new scale-spaces with deep detecting ability and high stability for image features aimed at image root generation. According to the heat distribution and spreading principle of various kinds of infinitesimal heat sources in the space medium,a multi-embed nonlinear diffusion equation that corresponds to the multi-embed nonlinear scale-space is proposed,a HARRIS-HESSIAN scale-space evaluation operator that aims at the structure acceleration characteristics of a local region and can make use of image pixels' relative spreading movement principle was constructed,then a single-parameter global symmetric proportion(SPGSP) operator was also constructed. An authentication test with 3000 to 5000 cloud entities shows the new scale-space can work well and is stable,when the whole cloud has 5%-50% behavior with un-trusted entities. Consequently,it can be used as the corresponding stable logic feature generation model and algorithm for all kinds of images,and logic relationships among image features for trust roots. 展开更多
关键词 image trust root SCALE-SPACE diffusion equation evolution operator feature detection
下载PDF
Image feature optimization based on nonlinear dimensionality reduction 被引量:3
11
作者 Rong ZHU Min YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1720-1737,共18页
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping... Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 展开更多
关键词 Image feature optimization Nonlinear dimensionality reduction Manifold learning Locally linear embedding (LLE)
原文传递
Fast uniform content-based satellite image registration using the scale-invariant feature transform descriptor 被引量:3
12
作者 Hamed BOZORGI Ali JAFARI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1108-1116,共9页
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ... Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points. 展开更多
关键词 Content-based image retrieval Feature point distribution Image registration Linear discriminant analysis REMOTESENSING Scale-invariant feature transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部