In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion ...An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordination is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.展开更多
Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillanc...Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness.展开更多
An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dyna...An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dynamical and sustained authentication. This paper proposes a basic function of constructing new scale-spaces with deep detecting ability and high stability for image features aimed at image root generation. According to the heat distribution and spreading principle of various kinds of infinitesimal heat sources in the space medium,a multi-embed nonlinear diffusion equation that corresponds to the multi-embed nonlinear scale-space is proposed,a HARRIS-HESSIAN scale-space evaluation operator that aims at the structure acceleration characteristics of a local region and can make use of image pixels' relative spreading movement principle was constructed,then a single-parameter global symmetric proportion(SPGSP) operator was also constructed. An authentication test with 3000 to 5000 cloud entities shows the new scale-space can work well and is stable,when the whole cloud has 5%-50% behavior with un-trusted entities. Consequently,it can be used as the corresponding stable logic feature generation model and algorithm for all kinds of images,and logic relationships among image features for trust roots.展开更多
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping...Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.展开更多
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ...Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.展开更多
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
文摘An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordination is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.
文摘Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness.
基金The national natural science foundation (61672442,61503316,61273290,61373147)Xiamen Scientific Plan Project (2014S0048,3502Z20123037)+1 种基金Fujian Scientific Plan Project (2013HZ00041)Fujian provincial education office A-class project(JA13238)
文摘An image trust root is a special type of soft trust root for trusted computing. However,image trust root generation is difficult,as it needs a corresponding stable logic feature generation model and algorithm for dynamical and sustained authentication. This paper proposes a basic function of constructing new scale-spaces with deep detecting ability and high stability for image features aimed at image root generation. According to the heat distribution and spreading principle of various kinds of infinitesimal heat sources in the space medium,a multi-embed nonlinear diffusion equation that corresponds to the multi-embed nonlinear scale-space is proposed,a HARRIS-HESSIAN scale-space evaluation operator that aims at the structure acceleration characteristics of a local region and can make use of image pixels' relative spreading movement principle was constructed,then a single-parameter global symmetric proportion(SPGSP) operator was also constructed. An authentication test with 3000 to 5000 cloud entities shows the new scale-space can work well and is stable,when the whole cloud has 5%-50% behavior with un-trusted entities. Consequently,it can be used as the corresponding stable logic feature generation model and algorithm for all kinds of images,and logic relationships among image features for trust roots.
基金Project (No 2008AA01Z132) supported by the National High-Tech Research and Development Program of China
文摘Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms.
文摘Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points.