提出了一种基于图像统计信息的低复杂度高性能压缩感知还原方法.通过分析自然图像在小波表示下能量的分布特点,建立指数衰减模型,并将其作为统计先验应用于还原算法中.还原算法分为列(行)方向还原,行(列)方向还原两步骤进行,同时引入包...提出了一种基于图像统计信息的低复杂度高性能压缩感知还原方法.通过分析自然图像在小波表示下能量的分布特点,建立指数衰减模型,并将其作为统计先验应用于还原算法中.还原算法分为列(行)方向还原,行(列)方向还原两步骤进行,同时引入包含图像小波域能量统计先验的权重矩阵,并约束还原结果符合该权重矩阵的能量分步特点.根据实际应用的不同,该方法包含两种不同复杂度的还原策略,分别为一次直接(one-time direct,OTD)还原和两次迭代(two times iterative,TTI)还原.OTD策略在两步骤中均使用相同的权重矩阵,还原速度较快;TTI策略在第2步还原时通过二次迭代修正权重矩阵以获得更精确的还原结果.实验表明:OTD还原速度较传统方法有大幅度提高,同时还原质量也有所提升;TTI在OTD基础上以牺牲一部分还原速度为代价,获得了更好的还原质量,同时还原速度较传统方法亦有提高.展开更多
文摘提出了一种基于图像统计信息的低复杂度高性能压缩感知还原方法.通过分析自然图像在小波表示下能量的分布特点,建立指数衰减模型,并将其作为统计先验应用于还原算法中.还原算法分为列(行)方向还原,行(列)方向还原两步骤进行,同时引入包含图像小波域能量统计先验的权重矩阵,并约束还原结果符合该权重矩阵的能量分步特点.根据实际应用的不同,该方法包含两种不同复杂度的还原策略,分别为一次直接(one-time direct,OTD)还原和两次迭代(two times iterative,TTI)还原.OTD策略在两步骤中均使用相同的权重矩阵,还原速度较快;TTI策略在第2步还原时通过二次迭代修正权重矩阵以获得更精确的还原结果.实验表明:OTD还原速度较传统方法有大幅度提高,同时还原质量也有所提升;TTI在OTD基础上以牺牲一部分还原速度为代价,获得了更好的还原质量,同时还原速度较传统方法亦有提高.