针对现有深度卷积嵌入聚类算法(deep convolutional embedded clustering,DCEC)的网络特征损失过大,对复杂图像没有提取有效特征的问题,提出一个具有17层网络结构的无监督深度聚类框架,并在编码层加入下采样层,减少参数和防止过拟合;在...针对现有深度卷积嵌入聚类算法(deep convolutional embedded clustering,DCEC)的网络特征损失过大,对复杂图像没有提取有效特征的问题,提出一个具有17层网络结构的无监督深度聚类框架,并在编码层加入下采样层,减少参数和防止过拟合;在解码层加入上采样层还原下采样造成的细节损失。分别结合DEC(deep embedded clustering)算法的损失函数和IDEC(improved deep embedded clustering)算法的采用局部结构保留优势的损失函数,得到两种基于卷积自编码的深度学习图像聚类算法DEC_DCNN(deep embedded clustering based on deep convolutional neural network)和IDEC_DCNN(improved deep embedded clustering based on deep convolutional neural network),并使用自适应矩估计(adaptive moment estimation,Adam)和小批量随机梯度下降(mini-batch stochastic gradient decent,mini-batch SGD)两种优化方法调整模型参数。3个经典图像数据集的实验结果显示,提出的17层网络结构对图像特征具有很好的鲁棒性和通用性,基于该网络结构的深度聚类算法取得了远优于现有深度聚类算法的结果,其聚类准确率均优于对比算法;对深度聚类算法DEC_DCNN和IDEC_DCNN的聚类结果准确率、指标值AMI(adjusted mutual information)和ARI(adjusted rand index)进行比较,IDEC_DCNN比DEC_DCNN的聚类性能更好,说明IDEC_DCNN算法的性能更优越。展开更多
传统的图像聚类方法存在对初始数据敏感且计算复杂度高的问题,且图像全局特征难以有效地表达图像内容。针对这些问题,提出一种基于Union-Find的图像聚类方法。首先,该方法采用视觉词袋模型Bo VWM(Bag of Visual Words Model)来描述图像...传统的图像聚类方法存在对初始数据敏感且计算复杂度高的问题,且图像全局特征难以有效地表达图像内容。针对这些问题,提出一种基于Union-Find的图像聚类方法。首先,该方法采用视觉词袋模型Bo VWM(Bag of Visual Words Model)来描述图像内容并且利用投票方法来计算每对图像的相似度得分;然后,对于相似度得分大于给定阈值的图像对进行union和find两个操作并将相连的分量形成聚类结果。实验结果表明,该方法较之于传统方法能较好地改善图像聚类效果,且不需要初始聚类数目作为先验参数。展开更多
文摘针对现有深度卷积嵌入聚类算法(deep convolutional embedded clustering,DCEC)的网络特征损失过大,对复杂图像没有提取有效特征的问题,提出一个具有17层网络结构的无监督深度聚类框架,并在编码层加入下采样层,减少参数和防止过拟合;在解码层加入上采样层还原下采样造成的细节损失。分别结合DEC(deep embedded clustering)算法的损失函数和IDEC(improved deep embedded clustering)算法的采用局部结构保留优势的损失函数,得到两种基于卷积自编码的深度学习图像聚类算法DEC_DCNN(deep embedded clustering based on deep convolutional neural network)和IDEC_DCNN(improved deep embedded clustering based on deep convolutional neural network),并使用自适应矩估计(adaptive moment estimation,Adam)和小批量随机梯度下降(mini-batch stochastic gradient decent,mini-batch SGD)两种优化方法调整模型参数。3个经典图像数据集的实验结果显示,提出的17层网络结构对图像特征具有很好的鲁棒性和通用性,基于该网络结构的深度聚类算法取得了远优于现有深度聚类算法的结果,其聚类准确率均优于对比算法;对深度聚类算法DEC_DCNN和IDEC_DCNN的聚类结果准确率、指标值AMI(adjusted mutual information)和ARI(adjusted rand index)进行比较,IDEC_DCNN比DEC_DCNN的聚类性能更好,说明IDEC_DCNN算法的性能更优越。
文摘传统的图像聚类方法存在对初始数据敏感且计算复杂度高的问题,且图像全局特征难以有效地表达图像内容。针对这些问题,提出一种基于Union-Find的图像聚类方法。首先,该方法采用视觉词袋模型Bo VWM(Bag of Visual Words Model)来描述图像内容并且利用投票方法来计算每对图像的相似度得分;然后,对于相似度得分大于给定阈值的图像对进行union和find两个操作并将相连的分量形成聚类结果。实验结果表明,该方法较之于传统方法能较好地改善图像聚类效果,且不需要初始聚类数目作为先验参数。