Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich textur...Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.展开更多
Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has ...Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands.展开更多
One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper pr...One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper proposed a method using face detection to predict the data of image sensor. The experimental results show that, the proposed algorithm is practical and reliable, and good outcome have been achieved in the application of instruction robot.展开更多
Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution image...Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution images to be processed. Currently it is difficult to support fast auto-focus at low power consumption on high-resolution images. This work proposes an efficient architecture for an Ada Boost-based face-priority auto-focus. The architecture supports block-based integral image computation to improve the processing speed on high-resolution images; meanwhile, it is reconfigurable so that it enables the sub-window adaptive cascade classification, which greatly improves the processing speed and reduces power consumption. Experimental results show that 96% detection rate in average and 58 fps(frame per second) detection speed are achieved for the1080p(1920×1080) images. Compared with the state-of-the-art work, the detection speed is greatly improved and power consumption is largely reduced.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 30370267)Key Project of Jilin Provincial Science & Technology Department (No. 20075014)
文摘Remote sensing image segmentation is the basis of image understanding and analysis. However,the precision and the speed of segmentation can not meet the need of image analysis,due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm(AGA) and Alternative Fuzzy C-Means(AFCM) . Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased,and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means(FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.
基金Under the auspices of National Natural Science Foundation of China(No.41071267,41001254)Natural Science Foundation of Fujian Province(No.2012I0005,2012J01167)
文摘Most evaluation of the consistency of multisensor images have focused on Normalized Difference Vegetation Index (NDVI) products for natural landscapes, often neglecting less vegetated urban landscapes. This gap has been filled through quantifying and evaluating spatial heterogeneity of urban and natural landscapes from QuickBird, Satellite pour l'observation de la Terre (SPOT), Ad- vanced Spacebome Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper (TM) images with variogram analysis. Instead of a logarithmic relationship with pixel size observed in the corresponding aggregated images, the spatial variability decayed and the spatial structures decomposed more slowly and complexly with spatial resolution for real multisensor im- ages. As the spatial resolution increased, the proportion of spatial variability of the smaller spatial structure decreased quickly and only a larger spatial structure was observed at very coarse scales. Compared with visible band, greater spatial variability was observed in near infrared band for both densely and less densely vegetated landscapes. The influence of image size on spatial heterogeneity was highly dependent on whether the empirical sernivariogram reached its sill within the original image size. When the empirical semivariogram did not reach its sill at the original observation scale, spatial variability and mean characteristic length scale would increase with image size; otherwise they might decrease. This study could provide new insights into the knowledge of spatial heterogeneity in real multisen- sor images with consideration of their nominal spatial resolution, image size and spectral bands.
文摘One being developed automatic sweep robot, need to estimate if anyone is on a certain range of road ahead then automatically adjust running speed, in order to ensure work efficiency and operation safety. This paper proposed a method using face detection to predict the data of image sensor. The experimental results show that, the proposed algorithm is practical and reliable, and good outcome have been achieved in the application of instruction robot.
基金supported in part by China Major Science and Technology (S&T) Project (Grant No. 2013ZX01033-001-001-003)National High-Tech R&D Program of China (863) (Grant Nos. 2012AA012701, 2012AA0109-04)+2 种基金National Natural Science Foundation of China (Grant No. 61274131)International S&T Cooperation Project of China (Grant No. 2012DFA11170)Importation and Development of the High-Caliber Talents Project of Beijing Municipal Institutions (Grant No. YETP0163)
文摘Auto-focus is very important for capturing sharp human face centered images in digital and smart phone cameras. With the development of image sensor technology, these cameras support more and more highresolution images to be processed. Currently it is difficult to support fast auto-focus at low power consumption on high-resolution images. This work proposes an efficient architecture for an Ada Boost-based face-priority auto-focus. The architecture supports block-based integral image computation to improve the processing speed on high-resolution images; meanwhile, it is reconfigurable so that it enables the sub-window adaptive cascade classification, which greatly improves the processing speed and reduces power consumption. Experimental results show that 96% detection rate in average and 58 fps(frame per second) detection speed are achieved for the1080p(1920×1080) images. Compared with the state-of-the-art work, the detection speed is greatly improved and power consumption is largely reduced.