To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty rem...Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults.展开更多
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
文摘Multimodality image registration and fusion are essential steps in building 3-D models from remotesensing data. We present in this paper a neural network technique for the registration and fusion of multimodali-ty remote sensing data for the reconstruction of 3-D models of terrain regions. A FeedForward neural network isused to fuse the intensity data sets with the spatial data set after learning its geometry. Results on real data arepresented. Human performance evaluation is assessed on several perceptual tests in order to evaluate the fusionresults.