Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior(ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of wat...Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior(ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.展开更多
基金supported by the National Natural Science Foundation of China (No. 61401413)
文摘Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior(ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.
文摘目的 现有方法存在特征提取时间过长、非对称失真图像预测准确性不高的问题,同时少有工作对非对称失真与对称失真立体图像的分类进行研究,为此提出了基于双目竞争的非对称失真立体图像质量评价方法。方法依据双目竞争的视觉现象,利用非对称失真立体图像两个视点的图像质量衰减程度的不同,生成单目图像特征的融合系数,融合从左右视点图像中提取的灰度空间特征与HSV(hue-saturation-value)彩色空间特征。同时,量化两个视点图像在结构、信息量和质量衰减程度等多方面的差异,获得双目差异特征。并且将双目融合特征与双目差异特征级联为一个描述能力更强的立体图像质量感知特征向量,训练基于支持向量回归的特征-质量映射模型。此外,还利用双目差异特征训练基于支持向量分类模型的对称失真与非对称失真立体图像分类模型。结果 本文提出的质量预测模型在4个数据库上的SROCC(Spearman rank order correlation coefficient)和PLCC(Pearson linear correlation coefficient)均达到0.95以上,在3个非对称失真数据库上的均方根误差(root of mean square error,RMSE)取值均优于对比算法。在LIVE-Ⅱ(LIVE 3D image quality database phase Ⅱ)、IVC-Ⅰ(Waterloo-IVC 3D image quality assessment database phase Ⅰ和IVC-Ⅱ(Waterloo-IVC 3D image quality assessment database phase Ⅱ)这3个非对称失真立体图像测试数据库上的失真类型分类测试中,对称失真立体图像的分类准确率分别为89.91%、94.76%和98.97%,非对称失真立体图像的分类准确率分别为95.46%,92.64%和96.22%。结论 本文方法依据双目竞争的视觉现象融合左右视点图像的质量感知特征用于立体图像质量预测,能够提升非对称失真立体图像的评价准确性和鲁棒性。所提取双目差异性特征还能够用于将对称失真与非对称失真立体图像进行有效分类,分类准确性高。