A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F...A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.展开更多
In this paper,we introduce a novel approach to automatically regulate receptive fields in deep image parsing networks.Unlike previous work which placed much importance on obtaining better receptive fields using manual...In this paper,we introduce a novel approach to automatically regulate receptive fields in deep image parsing networks.Unlike previous work which placed much importance on obtaining better receptive fields using manually selected dilated convolutional kernels,our approach uses two affine transformation layers in the network’s backbone and operates on feature maps.Feature maps are inflated or shrunk by the new layer,thereby changing the receptive fields in the following layers.By use of end-to-end training,the whole framework is data-driven,without laborious manual intervention.The proposed method is generic across datasets and different tasks.We have conducted extensive experiments on both general image parsing tasks,and face parsing tasks as concrete examples,to demonstrate the method’s superior ability to regulate over manual designs.展开更多
基金Project(2008041001) supported by the Academician Foundation of China Project(N0601-041) supported by the General Armament Department Science Foundation of China
文摘A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results.
基金supported by the National Natural Science Foundation of China (Nos.U1536203,61572493)the Cutting Edge Technology Research Program of the Institute of Information Engineering,CAS (No.Y7Z0241102)+1 种基金the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of the Ministry of Education (No.Y6Z0021102)Nanjing University of Science and Technology (No.JYB201702)
文摘In this paper,we introduce a novel approach to automatically regulate receptive fields in deep image parsing networks.Unlike previous work which placed much importance on obtaining better receptive fields using manually selected dilated convolutional kernels,our approach uses two affine transformation layers in the network’s backbone and operates on feature maps.Feature maps are inflated or shrunk by the new layer,thereby changing the receptive fields in the following layers.By use of end-to-end training,the whole framework is data-driven,without laborious manual intervention.The proposed method is generic across datasets and different tasks.We have conducted extensive experiments on both general image parsing tasks,and face parsing tasks as concrete examples,to demonstrate the method’s superior ability to regulate over manual designs.