病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)...病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)2002-2022年间作物病害图像识别研究领域发表的相关文献进行分析.结果表明:作物病害图像识别研究呈明显上升趋势;学科领域涉及计算机科学、农学、植物科学、工程、环境生态学、遥感等,体现出明显的综合性和交叉性特点;中国、美国、印度、德国等国家发文数量最多,整体而言各国之间均存在较为密切的交流与合作,其中中美之间合作最为密切;在发文量排在世界前10的研究机构中有6家来自中国,展现出很强的整体优势;MAHLEIN A K、HUANG W J和KHAN M A是发文量排在前3的核心作者;Computers and Electronics in Agriculture、Frontiers in Plant Science、Remote Sensing等期刊为主要发表载体;作物病害图像数据的获取、基于机器学习的作物病害图像识别以及基于深度学习的作物病害图像识别是近20年该研究领域的主要热点和重点.作物病害图像识别的研究深受先进技术推动,尤其是在当前人工智能技术背景下方兴未艾,是面向智慧农业的重要组成部分.而当前数据样本规模偏小,相似症状的不同病害精确识别困难,模型可解释性和泛化性有限等问题依旧制约其进一步发展.构建基于生成式大模型的大规模作物病害数据集,加强多模态数据融合,提升模型的可解释性和泛化性,开展实时监测识别等内容将是未来作物病害图像识别的主要研究方向.展开更多
【目的】针对红外相机拍摄的野生动物图像数据量大、无效图像占比多、图像背景复杂等问题,提出一种可对图像进行自动、高准确率识别的模型,为生物多样性研究和野生动物保护工作提供更高效的支持。【方法】收集整理近4年来北京园林绿化...【目的】针对红外相机拍摄的野生动物图像数据量大、无效图像占比多、图像背景复杂等问题,提出一种可对图像进行自动、高准确率识别的模型,为生物多样性研究和野生动物保护工作提供更高效的支持。【方法】收集整理近4年来北京园林绿化生态系统监测网络各站点红外相机拍摄的约5 TB图像数据,对其手工标注并进行数据增强后自建10类共4234张图像数据集。基于ConvNeXt卷积神经网络,结合北京地区野生动物图像数据集特点,设计BSGG-ConvNeXt模型,使用BlurPool、SENet、全局响应归一化层(GRN)、GCNet提升模型识别能力,并在自建数据集上探究训练策略对ConvNeXt网络识别准确率的影响,通过与其他经典模型比较,明确BSGG-ConvNeXt模型的优势。利用公开的红外野生动物Snapshot Serengeti(SS)数据集和Caltech Camera Traps(CCT)数据集,验证模型的泛化能力。【结果】以ConvNeXt的ConvNeXt-T网络尺寸模型为例,其在自建数据集中的准确率为74.13%,乘加累积操作数(MACs)为4.47×10^(9)。应用不同改进方案发现,使用BlurPool后准确率提升2.2%,MACs降至1.07×10^(9);使用SENet后准确率提升3.2%;使用GRN并删掉缩放层后准确率升至87.18%,参数数量增至27.88×10^(6);使用GCNet后在不增大计算量的情况下准确率升至75.44%,但参数数量增至28.25×10^(6)。将上述改进方案结合得到的BSGGConvNeXt应用于ConvNeXt-T模型获得BSGG-ConvNeXt-T模型,参数数量虽有少量增多,但MACs降为1.07×10^(9),模型准确率升至83.63%,高于原模型。使用预训练权重后的BSGG-ConvNeXt-T模型准确率可达94.07%,高于ResNet-50(76.39%)、ResNeXt-50(87.60%)、MobileViT(90.00%)、DenseNet(87.66%)、RegNet(69.90%)、ConvNeXtv2(91.93%)、SwinTransformer的(86.23%)和MobileOne(71.53%),将BSGG-ConvNeXt模型应用于4种不同网络尺寸的ConvNeXt模型后,在自建数据集中的表现均优于未改进模型。BSGG-ConvNeXt模型在SS数据集中的识别准确率达50.28%,在CCT数据集中的识别准确率达56.15%,均高于原模型的准确率。【结论】BSGG-ConvNeXt模型识别红外相机拍摄的野生动物图像准确率更高,在自建、公开的野生动物红外图像数据集上均有较好表现,且具有一定泛化能力。展开更多
文摘病害是影响农作物品质和产量的重要因素,随着计算机视觉、光学、遥感和物联网技术的进步,基于图像的作物病害自动识别研究发展迅速.为深入了解全球作物病害图像识别的相关研究进展,利用文献计量分析方法对Web of Science核心合集(SCI-E)2002-2022年间作物病害图像识别研究领域发表的相关文献进行分析.结果表明:作物病害图像识别研究呈明显上升趋势;学科领域涉及计算机科学、农学、植物科学、工程、环境生态学、遥感等,体现出明显的综合性和交叉性特点;中国、美国、印度、德国等国家发文数量最多,整体而言各国之间均存在较为密切的交流与合作,其中中美之间合作最为密切;在发文量排在世界前10的研究机构中有6家来自中国,展现出很强的整体优势;MAHLEIN A K、HUANG W J和KHAN M A是发文量排在前3的核心作者;Computers and Electronics in Agriculture、Frontiers in Plant Science、Remote Sensing等期刊为主要发表载体;作物病害图像数据的获取、基于机器学习的作物病害图像识别以及基于深度学习的作物病害图像识别是近20年该研究领域的主要热点和重点.作物病害图像识别的研究深受先进技术推动,尤其是在当前人工智能技术背景下方兴未艾,是面向智慧农业的重要组成部分.而当前数据样本规模偏小,相似症状的不同病害精确识别困难,模型可解释性和泛化性有限等问题依旧制约其进一步发展.构建基于生成式大模型的大规模作物病害数据集,加强多模态数据融合,提升模型的可解释性和泛化性,开展实时监测识别等内容将是未来作物病害图像识别的主要研究方向.
文摘【目的】针对红外相机拍摄的野生动物图像数据量大、无效图像占比多、图像背景复杂等问题,提出一种可对图像进行自动、高准确率识别的模型,为生物多样性研究和野生动物保护工作提供更高效的支持。【方法】收集整理近4年来北京园林绿化生态系统监测网络各站点红外相机拍摄的约5 TB图像数据,对其手工标注并进行数据增强后自建10类共4234张图像数据集。基于ConvNeXt卷积神经网络,结合北京地区野生动物图像数据集特点,设计BSGG-ConvNeXt模型,使用BlurPool、SENet、全局响应归一化层(GRN)、GCNet提升模型识别能力,并在自建数据集上探究训练策略对ConvNeXt网络识别准确率的影响,通过与其他经典模型比较,明确BSGG-ConvNeXt模型的优势。利用公开的红外野生动物Snapshot Serengeti(SS)数据集和Caltech Camera Traps(CCT)数据集,验证模型的泛化能力。【结果】以ConvNeXt的ConvNeXt-T网络尺寸模型为例,其在自建数据集中的准确率为74.13%,乘加累积操作数(MACs)为4.47×10^(9)。应用不同改进方案发现,使用BlurPool后准确率提升2.2%,MACs降至1.07×10^(9);使用SENet后准确率提升3.2%;使用GRN并删掉缩放层后准确率升至87.18%,参数数量增至27.88×10^(6);使用GCNet后在不增大计算量的情况下准确率升至75.44%,但参数数量增至28.25×10^(6)。将上述改进方案结合得到的BSGGConvNeXt应用于ConvNeXt-T模型获得BSGG-ConvNeXt-T模型,参数数量虽有少量增多,但MACs降为1.07×10^(9),模型准确率升至83.63%,高于原模型。使用预训练权重后的BSGG-ConvNeXt-T模型准确率可达94.07%,高于ResNet-50(76.39%)、ResNeXt-50(87.60%)、MobileViT(90.00%)、DenseNet(87.66%)、RegNet(69.90%)、ConvNeXtv2(91.93%)、SwinTransformer的(86.23%)和MobileOne(71.53%),将BSGG-ConvNeXt模型应用于4种不同网络尺寸的ConvNeXt模型后,在自建数据集中的表现均优于未改进模型。BSGG-ConvNeXt模型在SS数据集中的识别准确率达50.28%,在CCT数据集中的识别准确率达56.15%,均高于原模型的准确率。【结论】BSGG-ConvNeXt模型识别红外相机拍摄的野生动物图像准确率更高,在自建、公开的野生动物红外图像数据集上均有较好表现,且具有一定泛化能力。