针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法...针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。展开更多
对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类...对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。展开更多
文摘针对传统图像识别算法匹配正确率低、运行时间较长等问题,文中提出了基于改进ORB-FLANN(Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)的工件图像识别方法。对ORB算法特征描述、图像特征匹配算法进行修改,解决传统图像识别算法在图像存在尺度和旋转变换情况下存在的弊端并降低误匹配率。该方法对ORB算法检测到的特征点采用SURF(Speeded Up Robust Features)算法添加方向信息并完成特征描述,得到旋转尺度不变性的特征点,结合FLANN算法并引入双向匹配策略进行特征点粗匹配,最后利用渐进采样一致算法进一步剔除误匹配点对完成精匹配。实验结果表明,与其他方法相比,改进算法在处理尺度、旋转等变换图像时,匹配正确率分别提高了2.6%~18.8%和29.5%~43.9%,运行时长均在4 s以内,提高了对工件图像的识别效率和精准性。
文摘对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。