A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color stati...A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color statistics. Then it separates skin regions from non-skin regions. After that, it locates the fronta l human face(s) within the skin regions. In the first step, 250 skin samples from persons of different ethnicities are used to determine the color distribution o f human skin in chromatic color space in order to get a chroma chart showing lik elihoods of skin colors. This chroma chart is used to generate, from the origina l color image, a gray scale image whose gray value at a pixel shows its likelih ood of representing the skin. The algorithm uses an adaptive thresholding proces s to achieve the optimal threshold value for dividing the gray scale image into separate skin regions from non skin regions. Finally, multiple face templates ma tching is used to determine if a given skin region represents a frontal human fa ce or not. Test of the system with more than 400 color images showed that the re sulting detection rate was 83%, which is better than most color-based face dete c tion systems. The average speed for face detection is 0.8 second/image (400×300 pixels) on a Pentium 3 (800MHz) PC.展开更多
A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin ar...A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin are selected as candidates for human face. In the next stage, the candidates are matched with a face model and given an evaluation of the match degree by the matching module. And if the evaluation of the match result is too low, a reinforcement learning stage will start to search the best parameters of the skin-color selector. It has been tested using many photos of various ethnic groups under various lighting conditions, such as different light source, high light and shadow. And the experiment result proved that this algorithm is robust to the vary-ing lighting conditions and personal conditions.展开更多
文摘A color based system using multiple templates was developed and implem ented for detecting human faces in color images. The algorithm consists of three image processing steps. The first step is human skin color statistics. Then it separates skin regions from non-skin regions. After that, it locates the fronta l human face(s) within the skin regions. In the first step, 250 skin samples from persons of different ethnicities are used to determine the color distribution o f human skin in chromatic color space in order to get a chroma chart showing lik elihoods of skin colors. This chroma chart is used to generate, from the origina l color image, a gray scale image whose gray value at a pixel shows its likelih ood of representing the skin. The algorithm uses an adaptive thresholding proces s to achieve the optimal threshold value for dividing the gray scale image into separate skin regions from non skin regions. Finally, multiple face templates ma tching is used to determine if a given skin region represents a frontal human fa ce or not. Test of the system with more than 400 color images showed that the re sulting detection rate was 83%, which is better than most color-based face dete c tion systems. The average speed for face detection is 0.8 second/image (400×300 pixels) on a Pentium 3 (800MHz) PC.
文摘A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin are selected as candidates for human face. In the next stage, the candidates are matched with a face model and given an evaluation of the match degree by the matching module. And if the evaluation of the match result is too low, a reinforcement learning stage will start to search the best parameters of the skin-color selector. It has been tested using many photos of various ethnic groups under various lighting conditions, such as different light source, high light and shadow. And the experiment result proved that this algorithm is robust to the vary-ing lighting conditions and personal conditions.