期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
眼底图像质量分类综述 被引量:8
1
作者 张芳 赵东旭 +5 位作者 肖志涛 徐旭 耿磊 吴骏 刘彦北 王雯 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第3期501-512,共12页
眼底视网膜是唯一可用肉眼直接并集中观察到动脉、静脉与毛细血管的部位,因而眼底图像成为医生诊断眼底疾病及糖尿病、高血压、高血脂等疾病的重要依据.高质量的眼底图像是医生对眼底疾病患者进行病情诊断与治疗的前提.根据眼底相机采... 眼底视网膜是唯一可用肉眼直接并集中观察到动脉、静脉与毛细血管的部位,因而眼底图像成为医生诊断眼底疾病及糖尿病、高血压、高血脂等疾病的重要依据.高质量的眼底图像是医生对眼底疾病患者进行病情诊断与治疗的前提.根据眼底相机采集到的视网膜图像中眼底结构清晰度、图像对比度等条件对眼底图像质量进行分类成为一个既具有研究价值又极具挑战性的难点问题.首先简述了眼底图像质量分类的研究意义和实用价值,回顾了其发展历史;然后介绍了方法分类、每类方法的基本思想并梳理了各类方法中代表性算法及其特点;之后针对用于眼底质量分类的数据集,分析比较了主要眼底图像质量分类方法的性能.分析表明,传统方法中依据眼底结构特征判断视网膜图像质量相较于通用图像质量参数更加客观,而随着神经网络与机器学习的出现,在大数据驱动下,基于卷积神经网络的质量分类方法在准确率与鲁棒性方面性能更佳.最后对眼底图像质量分类未来的发展趋势进行展望. 展开更多
关键词 眼底图像质量分类 通用图像质量参数 眼底结构信息 深度学习
下载PDF
基于ResNet50-OC模型的彩色眼底照片质量多分类方法效果评估 被引量:2
2
作者 万程 周雪婷 +2 位作者 游齐靖 沈建新 俞秋丽 《中华实验眼科杂志》 CAS CSCD 北大核心 2021年第9期785-790,共6页
目的对基于深度学习的ResNet50-OC模型彩色眼底照片质量多分类的效果进行评估。方法纳入2018年7月在南京医科大学附属明基医院收集的彩色眼底照片PD数据集及EyePACS数据集,临床医师根据眼底图像的成像质量将其大致分为质量较好、曝光不... 目的对基于深度学习的ResNet50-OC模型彩色眼底照片质量多分类的效果进行评估。方法纳入2018年7月在南京医科大学附属明基医院收集的彩色眼底照片PD数据集及EyePACS数据集,临床医师根据眼底图像的成像质量将其大致分为质量较好、曝光不足、曝光过度、边缘模糊和镜头反光5类。在训练集中,每个类别包含1000张图像,其中800张选自EyePACS数据集,200张选自PD数据集;在测试集中,每个类别包含500张图像,其中400张选自EyePACS数据集,100张选自PD数据集。训练集总计5000张图像,测试集总计2500张图像。对图像进行归一化处理和数据扩增。采用迁移学习方法初始化网络模型的参数,在此基础上对比当前深度学习主流分类网络VGG、Inception-resnet-v2、ResNet和DenseNet,选取准确率和Micro F1值最优的网络ResNet50作为分类模型的主网络。在ResNet50训练过程中引入One-Cycle策略加快模型收敛速度,得到最优模型ResNet50-OC并将其应用于眼底照片质量多分类,评估ResNet50与ResNet50-OC对眼底照片进行多分类的准确率和Micro F1值。结果ResNet50对彩色眼底照片质量多分类准确率和Micro F1值明显高于VGG、Inception-resnet-v2、ResNet34和DenseNet。ResNet50-OC模型训练15轮对眼底图像质量多分类准确率为98.77%,高于ResNet50训练50轮的98.76%;ResNet50-OC模型训练15轮对眼底图像质量多分类的Micro F1值为98.78%,与ResNet50训练50轮的Micro F1值相同。结论ResNet50-OC模型可以准确、有效地对彩色眼底照片质量进行多分类,One-Cycle策略可减少训练次数,提高分类效率。 展开更多
关键词 人工智能 图像质量分类 卷积神经网络 单周期学习 彩色眼底照片
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部