为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行...为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。展开更多
针对红外图像分辨率偏低的问题,设计了一种改进的超分辨率生成对抗网络(Super-Resolution Using a Generative Adversarial Network,SRGAN)算法。在生成网络中,提出应用残差密集网络获取各网络层提取的图像特征以保留图像更多的高频信息...针对红外图像分辨率偏低的问题,设计了一种改进的超分辨率生成对抗网络(Super-Resolution Using a Generative Adversarial Network,SRGAN)算法。在生成网络中,提出应用残差密集网络获取各网络层提取的图像特征以保留图像更多的高频信息,并采用渐进式上采样方式以提升大缩放因子下超分辨率重建效果。在损失函数方面采用更符合人类感官的感知损失,使生成图像在感官和内容上与真实高分辨率图像更加接近。实验结果表明:所提方法重建的超分辨率红外图像质量在主观及客观评价中均要优于当前具有代表性的方法。展开更多
文摘为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。
文摘针对红外图像分辨率偏低的问题,设计了一种改进的超分辨率生成对抗网络(Super-Resolution Using a Generative Adversarial Network,SRGAN)算法。在生成网络中,提出应用残差密集网络获取各网络层提取的图像特征以保留图像更多的高频信息,并采用渐进式上采样方式以提升大缩放因子下超分辨率重建效果。在损失函数方面采用更符合人类感官的感知损失,使生成图像在感官和内容上与真实高分辨率图像更加接近。实验结果表明:所提方法重建的超分辨率红外图像质量在主观及客观评价中均要优于当前具有代表性的方法。