Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The pro...Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.展开更多
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
We present a robust connected-component (CC) based method for automatic detection and segmentation of text in real-scene images. This technique can be applied in robot vision, sign recognition, meeting processing and ...We present a robust connected-component (CC) based method for automatic detection and segmentation of text in real-scene images. This technique can be applied in robot vision, sign recognition, meeting processing and video indexing. First, a Non-Linear Niblack method (NLNiblack) is proposed to decompose the image into candidate CCs. Then, all these CCs are fed into a cascade of classifiers trained by Adaboost algorithm. Each classifier in the cascade responds to one feature of the CC. Proposed here are 12 novel features which are insensitive to noise, scale, text orientation and text language. The classifier cascade allows non-text CCs of the image to be rapidly discarded while more computation is spent on promising text-like CCs. The CCs passing through the cascade are considered as text components and are used to form the segmentation result. A prototype system was built, with experimental results proving the effectiveness and efficiency of the proposed method.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
In this paper, a novel motion texture approach is presented for synthesizing long character motion (e.g., kungfu) that is similar to the original short input motion. First, a new motion with repeated frames is generat...In this paper, a novel motion texture approach is presented for synthesizing long character motion (e.g., kungfu) that is similar to the original short input motion. First, a new motion with repeated frames is generated by exploiting the symmetric properties of the frames and reversing the motion sequence playback in a given motion sequence. Then, the order of the above motion sequence is rearranged by putting the start and the end frames together. The graphcut algorithm is used to seamlessly synthesize the transition between the start and the end frames, which is noted as graphcut-based motion-texton. Finally, we utilize the motion-textons to synthesize long motion texture, which can be patched together like the image texture synthesis method using graphcut algorithm, and automatically form a long motion texture endlessly. Our approach is demonstrated by synthesizing the long kungfu motion texture without visual artifacts, together with post-processing including our new developed graphcut-based motion blending and Poisson-based motion smoothing techniques.展开更多
It is important to segment image correctly to extract guidance information for automatic agriculture vehicle. If we can make the computer know where the crops are, we can extract the guidance line easily. Images were ...It is important to segment image correctly to extract guidance information for automatic agriculture vehicle. If we can make the computer know where the crops are, we can extract the guidance line easily. Images were divided into some rec-tangle small windows, then a pair of 1-D arrays was constructed in each small windows. The correlation coefficients of every small window constructed the features to segment images. The results showed that correlation analysis is a potential approach for processing complex farmland for guidance system, and more correlation analysis methods must be researched.展开更多
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p...Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.展开更多
文摘Two dimensional(2 D) entropy method has to pay the price of time when applied to image segmentation. So the genetic algorithm is introduced to improve the computational efficiency of the 2 D entropy method. The proposed method uses both the gray value of a pixel and the local average gray value of an image. At the same time, the simple genetic algorithm is improved by using better reproduction and crossover operators. Thus the proposed method makes up the 2 D entropy method’s drawback of being time consuming, and yields satisfactory segmentation results. Experimental results show that the proposed method can save computational time when it provides good quality segmentation.
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
文摘We present a robust connected-component (CC) based method for automatic detection and segmentation of text in real-scene images. This technique can be applied in robot vision, sign recognition, meeting processing and video indexing. First, a Non-Linear Niblack method (NLNiblack) is proposed to decompose the image into candidate CCs. Then, all these CCs are fed into a cascade of classifiers trained by Adaboost algorithm. Each classifier in the cascade responds to one feature of the CC. Proposed here are 12 novel features which are insensitive to noise, scale, text orientation and text language. The classifier cascade allows non-text CCs of the image to be rapidly discarded while more computation is spent on promising text-like CCs. The CCs passing through the cascade are considered as text components and are used to form the segmentation result. A prototype system was built, with experimental results proving the effectiveness and efficiency of the proposed method.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Project supported by the National Natural Science Foundation of China (Nos. 60573153 and 60533080), and Program for New Century Excellent Talents in University (No. NCET-05-0519), China
文摘In this paper, a novel motion texture approach is presented for synthesizing long character motion (e.g., kungfu) that is similar to the original short input motion. First, a new motion with repeated frames is generated by exploiting the symmetric properties of the frames and reversing the motion sequence playback in a given motion sequence. Then, the order of the above motion sequence is rearranged by putting the start and the end frames together. The graphcut algorithm is used to seamlessly synthesize the transition between the start and the end frames, which is noted as graphcut-based motion-texton. Finally, we utilize the motion-textons to synthesize long motion texture, which can be patched together like the image texture synthesis method using graphcut algorithm, and automatically form a long motion texture endlessly. Our approach is demonstrated by synthesizing the long kungfu motion texture without visual artifacts, together with post-processing including our new developed graphcut-based motion blending and Poisson-based motion smoothing techniques.
文摘It is important to segment image correctly to extract guidance information for automatic agriculture vehicle. If we can make the computer know where the crops are, we can extract the guidance line easily. Images were divided into some rec-tangle small windows, then a pair of 1-D arrays was constructed in each small windows. The correlation coefficients of every small window constructed the features to segment images. The results showed that correlation analysis is a potential approach for processing complex farmland for guidance system, and more correlation analysis methods must be researched.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2013SCU11006)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying,Mapping and Geoinformation of China (Grant No.DM2014SC02)the Key Laboratory of Geospecial Information Technology,Ministry of Land and Resources of China (Grant No.KLGSIT201504)
文摘Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation.