Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given da...Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.展开更多
In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy ...In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy c means(FCM) algorithm. Through the attributes of size and shape pattern spectrum,the optimal morphological structuring element was determined.According to the optimal parameters,some image noises were removed with an improved area opening and closing by reconstruction operation,which consist of image regional markers,and the bubbles were finely separated from each other by watershed transform.The experimental results show that the structural element can be determined adaptively by shape and size pattern spectrum,and the froth image is segmented accurately.Compared with other froth image segmentation method,the proposed method achieves much high accuracy,based on which,the bubble size and shape features are extracted effectively.展开更多
Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic...Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic detection of the cell contour. However, the application of this method on colon cell images was not effective. In this paper, the authors have proposed a new technique to reduce the analysis time needed to detect cells in a given image. This technique is based on the active contour method but now using a progressive division of the dimensions of the image to achieve convergence. The model proposed succeeded in detecting cells whose boundaries are not necessarily defined by a gradient. The initial curve can be anywhere in the image, and interior contours can be automatically detected. The developed algorithm was successfully applied on textured multispectral images of three types of cells, including benign hyperplasia (BH), intraepithelial neoplasia (IN), and carcinoma (Ca) cells.展开更多
This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by hig...This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by high- and low-frequency.In the high-frequency part the wavelet multiscale was used for the edge detection,and the low-frequency part conducted on segmentation using the entropy iterative threshold selection method.Through the consideration of the image edge and region,a CT image of the thorax was chosen to test the proposed method for the segmentation of the lungs.Experimental results show that the method is efficient to segment the interesting region of an image compared with conventional methods.展开更多
Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boun...Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boundaries from IVUS images is a basic and necessary step for quantitative assessment of the vascular walls.Due to ultrasound speckles, artifacts and individual differences,automated segmentation of IVUS images represents a challenging task. In this paper,a random walk based method is proposed for fully automated segmentation of IVUS images. Robust and accurate determination of the seed points for different regions is the key to successful use of the random walk algorithm in segmentation of IVUS images and is the focus of the present work. Performance of the proposed algorithm was evaluated over an image database with 900 IVUS image frames of nine patient cases. The preliminary experimental results show the potential of the proposed IVUS image segmentation approach.展开更多
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image...The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.展开更多
A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the s...A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the structure from training images. When segmenting a novel image similar to the training images, the technique of narrow level set method is used. The higher dimensional surface evolution metric is defined by the prior model instead of by energy minimization function. This method offers several advantages. First, SVM for density estimation is consistent and its solution is sparse. Second, compared to the traditional level set methods, this method incorporates shape information on the object to be segmented into the segmentation process. Segmentation results are demonstrated on synthetic images, MR images and ultrasonic images.展开更多
Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key para...Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.展开更多
Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentatio...Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.展开更多
Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.T...Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.展开更多
Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In...Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.展开更多
Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods ...Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods often fail to efficiently remove poor-quality elements especially in regions with sharp features. In this paper, we propose and use a robust segmentation method followed by remeshing the segmented mesh. Mesh segmentation is initiated using an existing Live-wire interaction approach and is further refined using local mesh operations. The refined segmented mesh is finally sent to the remeshing pipeline, in which each mesh segment is remeshed independently. An experimental study compares our mesh segmentation method as well as remeshing results with representative existing methods. We demonstrate that the proposed segmentation method is robust and suitable for remeshing.展开更多
Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) ...Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.展开更多
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
基金Supported by the Key National Natural Science Foundation of China(61035003)~~
文摘Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.
基金Projects(60634020,60874069) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z137) supported by the National High-Tech Research and Development Program of China
文摘In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy c means(FCM) algorithm. Through the attributes of size and shape pattern spectrum,the optimal morphological structuring element was determined.According to the optimal parameters,some image noises were removed with an improved area opening and closing by reconstruction operation,which consist of image regional markers,and the bubbles were finely separated from each other by watershed transform.The experimental results show that the structural element can be determined adaptively by shape and size pattern spectrum,and the froth image is segmented accurately.Compared with other froth image segmentation method,the proposed method achieves much high accuracy,based on which,the bubble size and shape features are extracted effectively.
文摘Automatic interpretation of the images of colon cell biopsies requires automatic segmentation of these cells in the image obtained. The active contour method for image segmentation is a well known method for automatic detection of the cell contour. However, the application of this method on colon cell images was not effective. In this paper, the authors have proposed a new technique to reduce the analysis time needed to detect cells in a given image. This technique is based on the active contour method but now using a progressive division of the dimensions of the image to achieve convergence. The model proposed succeeded in detecting cells whose boundaries are not necessarily defined by a gradient. The initial curve can be anywhere in the image, and interior contours can be automatically detected. The developed algorithm was successfully applied on textured multispectral images of three types of cells, including benign hyperplasia (BH), intraepithelial neoplasia (IN), and carcinoma (Ca) cells.
基金Science Research Foundation of Yunnan Fundamental Research Foundation of Applicationgrant number:2009ZC049M+1 种基金Science Research Foundation for the Overseas Chinese Scholars,State Education Ministrygrant number:2010-1561
文摘This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by high- and low-frequency.In the high-frequency part the wavelet multiscale was used for the edge detection,and the low-frequency part conducted on segmentation using the entropy iterative threshold selection method.Through the consideration of the image edge and region,a CT image of the thorax was chosen to test the proposed method for the segmentation of the lungs.Experimental results show that the method is efficient to segment the interesting region of an image compared with conventional methods.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ136)National Science&Technology Support Program during the 12th Five-Year Plan Period of China(No.2012BAI13B02)
文摘Intravascular ultrasound( IVUS) is an important imaging technique that is used to study vascular wall architecture for diagnosis and assessment of the vascular diseases. Segmentation of lumen and media-adventitia boundaries from IVUS images is a basic and necessary step for quantitative assessment of the vascular walls.Due to ultrasound speckles, artifacts and individual differences,automated segmentation of IVUS images represents a challenging task. In this paper,a random walk based method is proposed for fully automated segmentation of IVUS images. Robust and accurate determination of the seed points for different regions is the key to successful use of the random walk algorithm in segmentation of IVUS images and is the focus of the present work. Performance of the proposed algorithm was evaluated over an image database with 900 IVUS image frames of nine patient cases. The preliminary experimental results show the potential of the proposed IVUS image segmentation approach.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025/E091002the Open Research Foundation of SKLab AUV, HEU under Grant No.2008003
文摘The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.
基金Project (No. 2003CB716103) supported by the National BasicResearch Program (973) of China and the Key Lab for Image Proc-essing and Intelligent Control of National Education Ministry, China
文摘A method of medical image segmentation based on support vector machine (SVM) for density estimation is presented. We used this estimator to construct a prior model of the image intensity and curvature profile of the structure from training images. When segmenting a novel image similar to the training images, the technique of narrow level set method is used. The higher dimensional surface evolution metric is defined by the prior model instead of by energy minimization function. This method offers several advantages. First, SVM for density estimation is consistent and its solution is sparse. Second, compared to the traditional level set methods, this method incorporates shape information on the object to be segmented into the segmentation process. Segmentation results are demonstrated on synthetic images, MR images and ultrasonic images.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2007CB209400)the National Natural Science Foundation of China (No.51004104)
文摘Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(20010FJ4030)supported by the Academician Foundation of Hunan Province,China
文摘Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.
基金supported by the National Natural Science Foundation of China(No.61170106)
文摘Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.
基金Project partially supported by the Ministry of Knowledge Economy (MKE) of Korea under the Information Technology Research Center (ITRC) Support Programthe Basic Research Program of the Korea Science (No. R01-2006-000-11214-0)
文摘Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.
基金the National Natural Science Foundation of China(Nos.61772523,61372168,61620106003,and 61331018)supported by a Chinese Government Scholarship
文摘Surface remeshing is widely required in modeling, animation, simulation, and many other computer graphics applications. Improving the elements' quality is a challenging task in surface remeshing. Existing methods often fail to efficiently remove poor-quality elements especially in regions with sharp features. In this paper, we propose and use a robust segmentation method followed by remeshing the segmented mesh. Mesh segmentation is initiated using an existing Live-wire interaction approach and is further refined using local mesh operations. The refined segmented mesh is finally sent to the remeshing pipeline, in which each mesh segment is remeshed independently. An experimental study compares our mesh segmentation method as well as remeshing results with representative existing methods. We demonstrate that the proposed segmentation method is robust and suitable for remeshing.
文摘Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.