期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于图匹配网络的小样本违禁物品分割算法 被引量:4
1
作者 朱祯悦 吕淑静 吕岳 《红外与激光工程》 EI CSCD 北大核心 2021年第11期418-426,共9页
自动化安检技术是维护公共安全、提升安检效率的一项有效措施。在实际场景中很难获得充足的违禁品标注样本用于神经网络的训练,并且在不同场景和安全级别下违禁品的类别也有所不同。为解决基于神经网络的违禁品检测方法所面临的样本不... 自动化安检技术是维护公共安全、提升安检效率的一项有效措施。在实际场景中很难获得充足的违禁品标注样本用于神经网络的训练,并且在不同场景和安全级别下违禁品的类别也有所不同。为解决基于神经网络的违禁品检测方法所面临的样本不均衡问题,以及避免模型在分割新的违禁品类别时需重新训练的现象,文中提出一种基于图匹配网络的小样本违禁物品分割算法。文中模型将测试图像与参考图像并行输入到图匹配网络中,并根据匹配结果从测试图像中分割出违禁品。所设计的图匹配模块不仅从图间节点的相似性考虑匹配问题,并利用DeepEMD算法建立全局概念,进一步提高测试图和参考图的匹配结果。在SIXray数据集和Xray-PI数据集上的实验表明:本模型在单样本分割任务中得到36.4%和51.2%的类平均交并比,分别比目前先进的单样本分割方法提高2.5%和2.3%。由此表明所设计的算法能有效提升小样本X光图像分割算法的精确度。 展开更多
关键词 语义分割 小样本学习 图匹配网络 X光 违禁品检测
下载PDF
基于图匹配网络的可解释知识图谱复杂问答方法 被引量:11
2
作者 孙亚伟 程龚 +1 位作者 厉肖 瞿裕忠 《计算机研究与发展》 EI CSCD 北大核心 2021年第12期2673-2683,共11页
知识图谱问答是人工智能领域的研究热点之一.在该任务中,自然语言问句结构与知识图谱结构之间的语义匹配是一个具有挑战的研究问题.现有工作主要利用深度学习技术对自然语言问句进行序列化编码,然后与知识图谱子图计算语义匹配,这样做... 知识图谱问答是人工智能领域的研究热点之一.在该任务中,自然语言问句结构与知识图谱结构之间的语义匹配是一个具有挑战的研究问题.现有工作主要利用深度学习技术对自然语言问句进行序列化编码,然后与知识图谱子图计算语义匹配,这样做法未充分利用复杂问句的结构信息,方法也缺乏可解释性.针对此问题,提出一种基于图匹配网络的知识图谱复杂问答方法TTQA.首先,通过语法分析方法,构建一个与知识图谱无关的未定查询图.然后,依据未定查询图和给定的知识图谱,构建一个与知识图谱相关的已定查询图,在其中,提出一种图匹配网络GMN,通过结合预训练语言模型和图神经网络技术,再利用注意力机制学习查询结构的上下文表示,从而得到更加丰富的结构匹配表示,用于已定查询图预测.在2个复杂问答数据集LC-QuAD 1.0和ComplexWebQuestions 1.1进行实验,结果表明:TTQA超过了现有方法.同时,通过消融实验验证了GMN的有效性.此外,TTQA生成的未定结构图和已定查询图增强了问答系统可解释性. 展开更多
关键词 知识谱问答 复杂问句 查询 图匹配网络 注意力机制
下载PDF
基于局部图匹配的智能合约重入漏洞检测方法 被引量:1
3
作者 张玉健 刘代富 童飞 《信息网络安全》 CSCD 北大核心 2022年第8期1-7,共7页
针对以太坊中智能合约遭受重入漏洞攻击的问题,文章提出一种基于局部图匹配的智能合约重入漏洞检测方法。该方法首先将智能合约源代码转化为包含基本结构信息的抽象语法树,并根据重入漏洞的特点裁剪抽象语法树;然后从抽象语法树中提取... 针对以太坊中智能合约遭受重入漏洞攻击的问题,文章提出一种基于局部图匹配的智能合约重入漏洞检测方法。该方法首先将智能合约源代码转化为包含基本结构信息的抽象语法树,并根据重入漏洞的特点裁剪抽象语法树;然后从抽象语法树中提取更加丰富的控制流和数据流,进而生成包含语法和语义信息的局部抽象语义图数据。文章利用图匹配神经网络对局部抽象语义图进行模型训练和测试,使用开源智能合约漏洞样本数据集生成测试数据并对方案进行评估。实验结果表明,该方法能够有效检测智能合约中的重入漏洞。 展开更多
关键词 智能合约 匹配神经网络 重入漏洞 抽象语义
下载PDF
基于依赖增强的分层抽象语法树的代码克隆检测
4
作者 万泽轩 谢春丽 +1 位作者 吕泉润 梁瑶 《计算机应用》 CSCD 北大核心 2024年第4期1259-1268,共10页
在软件工程领域,基于语义相似的代码克隆检测方法可以降低软件维护的成本并预防系统漏洞,抽象语法树(AST)作为典型的代码抽象表征形式,已成功应用于多种程序语言的代码克隆检测任务,然而现有工作主要利用原始AST提取代码的语义,没有深... 在软件工程领域,基于语义相似的代码克隆检测方法可以降低软件维护的成本并预防系统漏洞,抽象语法树(AST)作为典型的代码抽象表征形式,已成功应用于多种程序语言的代码克隆检测任务,然而现有工作主要利用原始AST提取代码的语义,没有深入挖掘AST中的深层语义和结构信息。针对上述问题,提出一种基于依赖增强的分层抽象语法树(DEHAST)的代码克隆检测方法。首先,对AST进行分层处理,将AST划分得到不同的语义层次;其次,为AST的不同层次添加相应的依赖增强边构建DEHAST,将简单的AST变成具有更丰富程序语义的异构图;最后,使用图匹配网络(GMN)模型检测异构图的相似性,实现代码克隆检测。在BigCloneBench和Google Code Jam两个数据集上的实验结果显示,DEHAST能够检测100%的Type-1和Type-2代码克隆、99%的Type-3代码克隆和97%的Type-4代码克隆;与基于树的方法ASTNN(AST-based Neural Network)相比,F1分数均提高了4个百分点,验证了DEHAST可以较好地完成代码语义克隆检测。 展开更多
关键词 代码克隆检测 语义克隆 抽象语法树 深度学习 图匹配网络
下载PDF
A Study on Short Text Matching Method Based on KS-BERT Algorithm
5
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning Short text matching Graph attention network Knowledge enhancement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部