动态网络链路预测广泛的应用前景,使得其逐渐成为网络科学研究的热点.动态网络链路演化过程中具有复杂的空间相关性和时间依赖性,导致其链路预测任务极具挑战.提出一个基于时序图卷积的动态网络链路预测模型(dynamic network link predi...动态网络链路预测广泛的应用前景,使得其逐渐成为网络科学研究的热点.动态网络链路演化过程中具有复杂的空间相关性和时间依赖性,导致其链路预测任务极具挑战.提出一个基于时序图卷积的动态网络链路预测模型(dynamic network link prediction based on sequential graph convolution, DNLP-SGC).针对网络快照序列不能有效反映动态网络连续性的问题,采用边缘触发机制对原始网络权重矩阵进行修正,弥补了离散快照表示动态网络存在时序信息丢失的不足.从网络演化过程出发,综合考虑节点间的特征相似性以及历史交互信息,采用时序图卷积提取动态网络中节点的特征,该方法融合了节点时空依赖关系.进一步,采用因果卷积网络捕获网络演化过程中潜在的全局时序特征,实现动态网络链路预测.在2个真实的网络数据集上的实验结果表明,DNLP-SGC在precision, recall, AUC指标上均优于对比的基线模型.展开更多
车载点云数据语义标注是道路场景语义分析和理解的前提,该文提出了结合分割算法和图卷积网络的车载点云分类方法。首先利用具有噪声的基于密度的聚类方法(densitybased spatial clustering of applications with noise,DBSCAN)将点云分...车载点云数据语义标注是道路场景语义分析和理解的前提,该文提出了结合分割算法和图卷积网络的车载点云分类方法。首先利用具有噪声的基于密度的聚类方法(densitybased spatial clustering of applications with noise,DBSCAN)将点云分割成点簇,并以点簇为节点,相邻点簇构成边,节点和边形成图;然后利用图卷积网络对图节点进行半监督分类,得到点云中任一点的类别标注。实验表明,所提方法以点簇代替原始点云,极大减少了算法处理的数据量;半监督图卷积网络模型顾及了点云数据的上下文关联,在少量标注样本的情况下,能够获得较高的分类精度,场景简单的实验数据分类精度可以与Pointnet++模型相当,场景较为复杂的实验数据分类精度与Pointnet++模型相差在6.7%以内。展开更多
文摘动态网络链路预测广泛的应用前景,使得其逐渐成为网络科学研究的热点.动态网络链路演化过程中具有复杂的空间相关性和时间依赖性,导致其链路预测任务极具挑战.提出一个基于时序图卷积的动态网络链路预测模型(dynamic network link prediction based on sequential graph convolution, DNLP-SGC).针对网络快照序列不能有效反映动态网络连续性的问题,采用边缘触发机制对原始网络权重矩阵进行修正,弥补了离散快照表示动态网络存在时序信息丢失的不足.从网络演化过程出发,综合考虑节点间的特征相似性以及历史交互信息,采用时序图卷积提取动态网络中节点的特征,该方法融合了节点时空依赖关系.进一步,采用因果卷积网络捕获网络演化过程中潜在的全局时序特征,实现动态网络链路预测.在2个真实的网络数据集上的实验结果表明,DNLP-SGC在precision, recall, AUC指标上均优于对比的基线模型.
文摘车载点云数据语义标注是道路场景语义分析和理解的前提,该文提出了结合分割算法和图卷积网络的车载点云分类方法。首先利用具有噪声的基于密度的聚类方法(densitybased spatial clustering of applications with noise,DBSCAN)将点云分割成点簇,并以点簇为节点,相邻点簇构成边,节点和边形成图;然后利用图卷积网络对图节点进行半监督分类,得到点云中任一点的类别标注。实验表明,所提方法以点簇代替原始点云,极大减少了算法处理的数据量;半监督图卷积网络模型顾及了点云数据的上下文关联,在少量标注样本的情况下,能够获得较高的分类精度,场景简单的实验数据分类精度可以与Pointnet++模型相当,场景较为复杂的实验数据分类精度与Pointnet++模型相差在6.7%以内。