期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
图学智能高职教学模块体系研究 被引量:3
1
作者 杨道富 《黄河水利职业技术学院学报》 2002年第2期53-55,共3页
通过对图学教育中高职教学模块理论的长期探讨 ,分析了工程图识读过程中的智能结构 ,设计了 10 0个模块组成的图学智能三维结构模型 ,从而建立了高等职业技术图学教育中的模块教学体系 ,以期为高职图学教育提供一定的教材处理、结构优... 通过对图学教育中高职教学模块理论的长期探讨 ,分析了工程图识读过程中的智能结构 ,设计了 10 0个模块组成的图学智能三维结构模型 ,从而建立了高等职业技术图学教育中的模块教学体系 ,以期为高职图学教育提供一定的教材处理、结构优化的理论指导。 展开更多
关键词 图学智能 理论模型 体系 教育 高等职业教育 模块
下载PDF
工程建模中的图学美学 被引量:1
2
作者 王环玲 邹丽芳 《教育教学论坛》 2022年第8期52-55,共4页
图学和美学作为工程建模的重要组成部分,不仅是模型建立的基础,也是提升学生审美能力的关键。审美情趣的提高,使学生感受到图形美的存在,图形美的力量会促进学生对工程图形建模完美程度的要求,提高图形设计和建模能力。以工程建模中图... 图学和美学作为工程建模的重要组成部分,不仅是模型建立的基础,也是提升学生审美能力的关键。审美情趣的提高,使学生感受到图形美的存在,图形美的力量会促进学生对工程图形建模完美程度的要求,提高图形设计和建模能力。以工程建模中图学和美学的一般概念为切入点,分别从工程制图中的图形美学、工程建模中的图学美学以及融合大图学与智能计算的智能建模图学美学等方面,阐述了工程制图和工程建模中图学和美学的表现形式,展望了智能建模的发展前景。基于图学美学的工程建模课程教学,提出基本要求和教学实施方式。结合图学和美学,对新时代工程图学和建模的教育教学进行了思考。 展开更多
关键词 智能计算 工程建模
下载PDF
Research on Garment Pattern Intelligent Design System
3
作者 刘雁 刘晓刚 耿兆丰 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期122-125,共4页
This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the int... This article discusses the disadvantages of current computer aided garment design system first, and then brings forward the frame of intelligent garment design system. Based on the analysis of the structure of the intelligent system, it is pointed out that the intelligent pattern design system is the most important module of the whole system. The use of an expert system to realize the intelligent pattern design system is then proposed and the key technique of the system is discussed at last. 展开更多
关键词 intelligent technology garment CAD style design pattern design
下载PDF
Semi-supervised Long-tail Endoscopic Image Classification
4
作者 Runnan Cao Mengjie Fang +2 位作者 Hailing Li Jie Tian Di Dong 《Chinese Medical Sciences Journal》 CAS CSCD 2022年第3期171-180,I0002,共11页
Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in H... Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir,the largest gastrointestinal public dataset with 23 diverse classes.Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling.After splitting the training dataset and the test dataset at a ratio of 4:1,we sampled 20%,50%,and 100% labeled training data to test the classification with limited annotations.Results The classification performance was evaluated by micro-average and macro-average evaluation metrics,with the Mathews correlation coefficient(MCC) as the overall evaluation.SSL algorithm improved the classification performance,with MCC increasing from 0.8761 to 0.8850,from 0.8983 to 0.8994,and from 0.9075 to 0.9095 with 20%,50%,and 100% ratio of labeled training data,respectively.With a 20% ratio of labeled training data,SSL improved both the micro-average and macro-average classification performance;while for the ratio of 50% and 100%,SSL improved the micro-average performance but hurt macro-average performance.Through analyzing the confusion matrix and labeling bias in each class,we found that the pseudo-based SSL algorithm exacerbated the classifier’ s preference for the head class,resulting in improved performance in the head class and degenerated performance in the tail class.Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification,especially when the labeled data is extremely limited,which may benefit the building of assisted diagnosis systems for low-volume hospitals.However,the pseudo-labeling strategy may amplify the effect of class imbalance,which hurts the classification performance for the tail class. 展开更多
关键词 endoscopic image artificial intelligence semi-supervised learning long-tail distribution image classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部