A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by ad...A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.展开更多
The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very...The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image.展开更多
文摘A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision.
文摘The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image.