期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于图小波网络模型的文本分类研究
1
作者 马诚 贾凯莉 +2 位作者 李云红 高子明 候嘉乐 《电子设计工程》 2022年第11期17-21,共5页
针对文本分类中获取文本复杂特征困难、分类准确率低等问题,建立基于图小波网络文本分类模型。根据语料词库共现信息及词与文档的关系构建文本图,使用改进TF-IDF算法、PMI算法计算词与文档之间和词与词之间文本图的权重;建立基于图小波... 针对文本分类中获取文本复杂特征困难、分类准确率低等问题,建立基于图小波网络文本分类模型。根据语料词库共现信息及词与文档的关系构建文本图,使用改进TF-IDF算法、PMI算法计算词与文档之间和词与词之间文本图的权重;建立基于图小波文本分类模型,将构建的文本图输入到GWNN模型中。经R8、R52及Ohsumed英文语料库测试结果表明,文本分类准确率分别达到98.09%、93.91%及69.3%,验证了基于图小波网络模型的有效性,也为文本分类提供了一种有效的方法。 展开更多
关键词 PMI算法 改进TF-IDF算法 图小波网络 文本分类
下载PDF
MFA-SGWNN:基于多特征聚合谱图小波神经网络的僵尸网络检测
2
作者 吴悔 陈旭 +1 位作者 景永俊 王叔洋 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期403-412,共10页
在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分。为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wa... 在僵尸网络攻击中,由于伪装后的僵尸网络流量数据特征与正常流量数据特征过于相似,使得传统的检测方法难以准确地进行区分。为解决这一问题,提出一种基于多特征聚合谱图小波神经网络的方法(Multi-feature Aggregation Spectral Graph Wavelet Neural Network,MFA-SGWNN),将流量的属性特征与空间特征相结合,能有效地捕获隐藏的感染主机流量特征,增强僵尸网络节点的特征表示,同时规避了数据样本不平衡和恶意加密流量对检测的影响。在ISCX2014僵尸网络数据集和CIC-IDS 2017(僵尸网络)数据集上的实验结果表明,MFA-SGWNN检测效果优于现有方法,具有更强的鲁棒性和泛化能力。 展开更多
关键词 僵尸网络 图小神经网络 网络安全
下载PDF
基于图小波卷积神经网络的时空图挖掘模型
3
作者 赵世豪 毛国君 +2 位作者 熊保平 黄山 林江宏 《计算机工程》 CAS CSCD 北大核心 2023年第7期85-93,共9页
针对传统时空图网络模型对时空序列数据空间结构刻画和时空特性挖掘不充分的问题,提出一种基于图小波神经网络的时空图挖掘模型(ST-GWNN)。基于图小波神经网络通过学习节点特征的局部化表达来捕捉时空序列数据中的空间拓扑结构,时间门... 针对传统时空图网络模型对时空序列数据空间结构刻画和时空特性挖掘不充分的问题,提出一种基于图小波神经网络的时空图挖掘模型(ST-GWNN)。基于图小波神经网络通过学习节点特征的局部化表达来捕捉时空序列数据中的空间拓扑结构,时间门控卷积层通过门控线性单元所堆叠的因果卷积来提取时间特征信息,并将多个时间步的空间图相融合来学习时间和空间2个维度关联特征的能力,以更好地捕获时空序列中复杂的时空相关性信息。在公共交通数据集PEMS-BAY上的实验结果表明,ST-GWNN模型能够获得较好的预测效果,当预测时长为15 min时,在MAE、RMSE、MAPE 3个评价指标上相较于基准模型取得最小值,且较基准模型最优值分别降低了2.31%、6.96%、5.84%;当预测时长为30 min和60 min时,较基准模型最优的MAPE、RMSE值分别降低了4.9%、3.51%和6.05%、6.68%,可适用于图网络属性的时空关系预测任务。 展开更多
关键词 时空 神经网络 时空序列数据 图小波网络 因果卷积
下载PDF
面向路网交通流态势预测的图神经网络模型 被引量:4
4
作者 姜山 丁治明 +1 位作者 徐馨润 严瑾 《计算机科学与探索》 CSCD 北大核心 2021年第6期1084-1091,共8页
融合了路网结构的交通流态势预测是一个高度非线性化且复杂的时空动态相关性的时序数据预测问题。然而,传统交通流态势预测方法无法建模交通网络中长时间序列数据间的时空相关性。针对交通路网交通流态势预测问题,提出了一种基于图结构... 融合了路网结构的交通流态势预测是一个高度非线性化且复杂的时空动态相关性的时序数据预测问题。然而,传统交通流态势预测方法无法建模交通网络中长时间序列数据间的时空相关性。针对交通路网交通流态势预测问题,提出了一种基于图结构的交通流预测深度学习模型。首先,基于图小波变换定义图小波卷积算子,设计了面向路网交通流态势预测的图小波卷积神经网络模块;其次,结合时空注意机制构建了用于道路网络交通流态势预测的时空动态相关性模型,以捕获交通网络的动态时空相关性;最后,采用叠加多层图小波神经网络模块的策略,构建了一种面向路网交通流态势预测的图小波卷积神经网络模型。实验结果表明,该网络模型在数据集上的性能优于现有的基线模型。通过图小波变换矩阵与傅里叶变换矩阵非零元素统计对比实验,发现基于图小波变换定义的卷积运算更具稀疏性。因此,基于图小波变换定义的卷积运算更有助于提升交通流态势预测模型的计算效率。 展开更多
关键词 交通流态势预测 卷积 图小神经网络 交通流
下载PDF
Wavelet neural network based watermarking technology of 2D vector maps 被引量:4
5
作者 Sun Jianguo Men Chaoguang 《High Technology Letters》 EI CAS 2011年第3期259-262,共4页
A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by ad... A novel lossless information hiding algorithm based on wavelet neural network for digital vector maps is introduced. Wavelet coefficients being manipulated are embedded into a vector map, which could be restored by adjusting the weights of neurons in the designed neural network. When extracting the watermark extraction, those coefficients would be extracted by wavelet decomposition. With the trained multilayer feed forward neural network, the watermark would be obtained finally by measuring the weights of neurons. Experimental results show that the average error coding rate is only 6% for the proposed scheme and compared with other classical algorithms on the same tests, it is indicated that the proposed algorithm hashigher robustness, better invisibility and less loss on precision. 展开更多
关键词 information hiding digital watermarking vector map neural network
下载PDF
A NEW APPROACH FOR UNSUPERVISED RESTORING IMAGES BASED ON WAVELET-DOMAIN PROJECTION PURSUIT LEARNING NETWORK
6
作者 LinWei TianZheng WenXianbin 《Journal of Electronics(China)》 2003年第5期383-386,共4页
The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very... The Wavelet-Domain Projection Pursuit Learning Network (WDPPLN) is proposedfor restoring degraded image. The new network combines the advantages of both projectionpursuit and wavelet shrinkage. Restoring image is very difficult when little is known about apriori knowledge for multisource degraded factors. WDPPLN successfully resolves this problemby separately processing wavelet coefficients and scale coefficients. Parameters in WDPPLN,which are used to simulate degraded factors, are estimated via WDPPLN training, using scalecoefficients. Also, WDPPLN uses soft-threshold of wavelet shrinkage technique to suppress noisein three high frequency subbands. The new method is compared with the traditional methodsand the Projection Pursuit Learning Network (PPLN) method. Experimental results demonstratethat it is an effective method for unsupervised restoring degraded image. 展开更多
关键词 Wavelet-domain Projection pursuit learning network Wavelet shrinkage Unsu-pervised restoring image
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部