This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essenti...This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essential for transmission efficiency and privacy preservation in the Io V. Nevertheless, the MAC protocol and pseudonym scheme are usually studied separately, in which a new MAC layer semantic linking attack could be carried out by analyzing the vehicles' transmission patterns even if they change pseudonyms simultaneously. This paper presents a hierarchical architecture named as the software defined Internet of Vehicles(SDIV). Facilitated by the architecture, a MAC layer aware pseudonym(MAP) scheme is proposed to resist the new attack. In the MAP, RSU clouds coordinate vehicles to change their transmission slots and pseudonyms simultaneously in the mix-zones by measuring the privacy level quantitatively. Security analysis and extensive simulations are conducted to show that the scheme provides reliable safety message broadcasting, improves the location privacy and network throughput in the Io V.展开更多
The data from two deep seismic sounding profiles was processed and studied comprehensively. The results show that crust_mantle structures in the investigated region obviously display layered characteristics and veloci...The data from two deep seismic sounding profiles was processed and studied comprehensively. The results show that crust_mantle structures in the investigated region obviously display layered characteristics and velocity structures and tectonic features have larger distinction in different geological structure blocks. The boundary interface C between the upper and lower crust and Moho fluctuate greatly. The shallowest depths of C (30 0km) and Moho (45 5km) under Jiashi deepen sharply from Jiashi to the western Kunlun mountain areas, where the depths of C and Moho are 44 0km and 70 0km, respectively. The higher velocity structures in the Tarim massif determine its relatively “stable” characteristics in crust tectonics. The phenomenon in the Jiashi region, where the distribution of earthquake foci mostly range from 20km to 40km in depth, may infer that the local uplift of C and Moho interface, anomalously lower velocity bodies and deep large faults control earthquake occurrence and seismogenic processes in the Jiashi strong earthquake swarm.展开更多
基金supported by key special project of National Key Research and Development Program (2017YFC0803900)
文摘This paper proposes a cross-layer design to enhance the location privacy under a coordinated medium access control(MAC) protocol for the Internet of Vehicles(Io V). The channel and pseudonym resources are both essential for transmission efficiency and privacy preservation in the Io V. Nevertheless, the MAC protocol and pseudonym scheme are usually studied separately, in which a new MAC layer semantic linking attack could be carried out by analyzing the vehicles' transmission patterns even if they change pseudonyms simultaneously. This paper presents a hierarchical architecture named as the software defined Internet of Vehicles(SDIV). Facilitated by the architecture, a MAC layer aware pseudonym(MAP) scheme is proposed to resist the new attack. In the MAP, RSU clouds coordinate vehicles to change their transmission slots and pseudonyms simultaneously in the mix-zones by measuring the privacy level quantitatively. Security analysis and extensive simulations are conducted to show that the scheme provides reliable safety message broadcasting, improves the location privacy and network throughput in the Io V.
文摘The data from two deep seismic sounding profiles was processed and studied comprehensively. The results show that crust_mantle structures in the investigated region obviously display layered characteristics and velocity structures and tectonic features have larger distinction in different geological structure blocks. The boundary interface C between the upper and lower crust and Moho fluctuate greatly. The shallowest depths of C (30 0km) and Moho (45 5km) under Jiashi deepen sharply from Jiashi to the western Kunlun mountain areas, where the depths of C and Moho are 44 0km and 70 0km, respectively. The higher velocity structures in the Tarim massif determine its relatively “stable” characteristics in crust tectonics. The phenomenon in the Jiashi region, where the distribution of earthquake foci mostly range from 20km to 40km in depth, may infer that the local uplift of C and Moho interface, anomalously lower velocity bodies and deep large faults control earthquake occurrence and seismogenic processes in the Jiashi strong earthquake swarm.