This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va...This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.展开更多
The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there ar...The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there are a number of prospects that arise at the different levels where techniques, such as Usenet, support vector machine are employed to have a significant impact. The present investigations explore the number of problems identified its level and related to finding information on web. The authors have attempted to examine the issues and prospects by applying different methods such as web graph analysis, the retrieval and analysis of newsgroup postings and statistical methods for inferring meaning in text. The proposed model thus assists the users in finding the existing formation of data they need. The study proposes three heuristics model to characterize the balancing between query and feedback information, so that adaptive relevance feedback. The authors have made an attempt to discuss the parameter factors that are responsible for the efficient searching. The important parameters can be taken care of for the future extension or development of search engines.展开更多
文摘This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient.
文摘The information access is the rich data available for information retrieval, evolved to provide principle approaches or strategies for searching. For building the successful web retrieval search engine model, there are a number of prospects that arise at the different levels where techniques, such as Usenet, support vector machine are employed to have a significant impact. The present investigations explore the number of problems identified its level and related to finding information on web. The authors have attempted to examine the issues and prospects by applying different methods such as web graph analysis, the retrieval and analysis of newsgroup postings and statistical methods for inferring meaning in text. The proposed model thus assists the users in finding the existing formation of data they need. The study proposes three heuristics model to characterize the balancing between query and feedback information, so that adaptive relevance feedback. The authors have made an attempt to discuss the parameter factors that are responsible for the efficient searching. The important parameters can be taken care of for the future extension or development of search engines.