Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers base...Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.展开更多
One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser s...One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.展开更多
文摘Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.
基金supported by the SEOUL R&BD NT070079,Korea,the ITRC(Information Technology Research Center)support program supervised by the ⅡTA(Institute for Information Technology Advancement)
文摘One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.