期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图正则化MNMF的中文垃圾邮件过滤
1
作者 刘遵雄 黄志强 +1 位作者 郑淑娟 石菲 《计算机应用研究》 CSCD 北大核心 2013年第9期2672-2676,共5页
利用向量空间模型表示的文本邮件数据具有高维性,不利于邮件过滤模型的建立,需要对数据进行降维处理。最大间隔Semi-NMF(max-margin semi-nonnegative matrix factorization,MNMF)能够同时实现维数约减和邮件分类,而图正则化NMF能保持... 利用向量空间模型表示的文本邮件数据具有高维性,不利于邮件过滤模型的建立,需要对数据进行降维处理。最大间隔Semi-NMF(max-margin semi-nonnegative matrix factorization,MNMF)能够同时实现维数约减和邮件分类,而图正则化NMF能保持数据空间的几何结构。基于以上两种NMF改进模型,提出了图正则化MNMF(graph regularized MNMF,GMNMF)算法,并设计了一个迭代的求解算法。将GMNMF算法及其他相关算法用于中文垃圾邮件过滤实验,结果表明GMNMF算法构建的过滤模型要优于其他较好的算法构建的过滤模型。 展开更多
关键词 向量空间模型 维数约减 最大间隔Semi—NMF 图正则化mnmf 中文垃圾邮件过滤
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部