In this paper, we consider a sex-structured predator prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray Schauder degree theory, the existence and stability of both h...In this paper, we consider a sex-structured predator prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.展开更多
文摘In this paper, we consider a sex-structured predator prey model with strongly coupled nonlinear reaction diffusion. Using the Lyapunov functional and Leray Schauder degree theory, the existence and stability of both homogenous and heterogenous steady-states are investigated. Our results demonstrate that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions guaranteeing the emergence of Turing patterns are derived.