为实现在复杂环境中对电力作业人员穿戴规范的识别,以感受野块网络(Receptive Field Block Network,RFBnet)为基础网络设计了一种穿戴多目标识别网络。该网络引入特征金字塔网络并采用VoVnet的密接方式改进RFBnet的VGG-16主干网络,在保...为实现在复杂环境中对电力作业人员穿戴规范的识别,以感受野块网络(Receptive Field Block Network,RFBnet)为基础网络设计了一种穿戴多目标识别网络。该网络引入特征金字塔网络并采用VoVnet的密接方式改进RFBnet的VGG-16主干网络,在保证浅层细节高分辨率的前提下尽可能获取深层语义信息以实现对弱小目标的检测。采用空洞卷积分支构建新的RFB模块以扩大感受野、提取更多的细节特征;将Soft-nms与DIoU-nms结合,设计一种后处理方法进行锚框回归,降低了漏检几率。实验结果表明,在RFBnet-512的基础上,该检测网络的mAP提升了10.09%,检测速度提升了4.7帧/秒;对安全帽、绝缘手套和高压绝缘靴的检测精度分别达到90.9%、67.1%和86.4%,检测速度达到17.5帧/秒。展开更多
文摘为实现在复杂环境中对电力作业人员穿戴规范的识别,以感受野块网络(Receptive Field Block Network,RFBnet)为基础网络设计了一种穿戴多目标识别网络。该网络引入特征金字塔网络并采用VoVnet的密接方式改进RFBnet的VGG-16主干网络,在保证浅层细节高分辨率的前提下尽可能获取深层语义信息以实现对弱小目标的检测。采用空洞卷积分支构建新的RFB模块以扩大感受野、提取更多的细节特征;将Soft-nms与DIoU-nms结合,设计一种后处理方法进行锚框回归,降低了漏检几率。实验结果表明,在RFBnet-512的基础上,该检测网络的mAP提升了10.09%,检测速度提升了4.7帧/秒;对安全帽、绝缘手套和高压绝缘靴的检测精度分别达到90.9%、67.1%和86.4%,检测速度达到17.5帧/秒。