Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a proble...Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a problem.First,a four-image CutMix method is used to increase the small-defect quantity,and the process is dynamically adjusted based on the beta distribution.Then,the classic YOLOv3 is improved to detect small defects accurately.The shallow and large feature maps are split,and several of them are merged with the feature maps of the predicted branch to preserve the shallow features.The loss function of YOLOv3 is optimized and weighted to improve the attention to small defects.Finally,this method is used to detect 512×512 pixel images under RTX 2060Ti GPU,which can reach the speed of 14.09 frame/s,and the mAP is 71.80%,which is 5%-10%higher than that of other methods.For small defects below 64×64 pixels,the mAP of the method reaches 64.15%,which is 14%higher than that of YOLOv3-GIoU.The surface defects of the workpiece can be effectively detected by the proposed method,and the performance in detecting small defects is significantly improved.展开更多
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis...Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.展开更多
Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neur...Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network(CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field(CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.展开更多
基金The National Natural Science Foundation of China(No.52075095).
文摘Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a problem.First,a four-image CutMix method is used to increase the small-defect quantity,and the process is dynamically adjusted based on the beta distribution.Then,the classic YOLOv3 is improved to detect small defects accurately.The shallow and large feature maps are split,and several of them are merged with the feature maps of the predicted branch to preserve the shallow features.The loss function of YOLOv3 is optimized and weighted to improve the attention to small defects.Finally,this method is used to detect 512×512 pixel images under RTX 2060Ti GPU,which can reach the speed of 14.09 frame/s,and the mAP is 71.80%,which is 5%-10%higher than that of other methods.For small defects below 64×64 pixels,the mAP of the method reaches 64.15%,which is 14%higher than that of YOLOv3-GIoU.The surface defects of the workpiece can be effectively detected by the proposed method,and the performance in detecting small defects is significantly improved.
文摘Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.
基金supported by the National Natural Science Foundation of China(Nos.U1509207,61325019,61472278,61403281 and 61572357)the Key Project of Natural Science Foundation of Tianjin(No.14JCZDJC31700)
文摘Semantic image segmentation is a task to predict a category label for every image pixel. The key challenge of it is to design a strong feature representation. In this paper, we fuse the hierarchical convolutional neural network(CNN) features and the region-based features as the feature representation. The hierarchical features contain more global information, while the region-based features contain more local information. The combination of these two kinds of features significantly enhances the feature representation. Then the fused features are used to train a softmax classifier to produce per-pixel label assignment probability. And a fully connected conditional random field(CRF) is used as a post-processing method to improve the labeling consistency. We conduct experiments on SIFT flow dataset. The pixel accuracy and class accuracy are 84.4% and 34.86%, respectively.