Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
In this paper we propose a method to model flowers of solid shape. Based on (Ijiri et al., 2005)’s method, we separate individual flower modeling and inflorescence modeling procedures into structure and geometry mode...In this paper we propose a method to model flowers of solid shape. Based on (Ijiri et al., 2005)’s method, we separate individual flower modeling and inflorescence modeling procedures into structure and geometry modeling. We incorporate interactive editing gestures to allow the user to edit structure parameters freely onto structure diagram. Furthermore, we use free-hand sketching techniques to allow users to create and edit 3D geometrical elements freely and easily. The final step is to automatically merge all independent 3D geometrical elements into a single waterproof mesh. Our experiments show that this solid modeling approach is promising. Using our approach, novice users can create vivid flower models easily and freely. The generated flower model is waterproof. It can have applications in visualization, animation, gaming, and toys and decorations if printed out on 3D rapid prototyping devices.展开更多
This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden ...This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting distribution over primitives. The stylized illustration is simulated by a grid-based method, in which we ‘fill’ the desirable pictorial units into the spatial occupation of CSG primitives, instead of “pixel-by-pixel” painting. This region-by-region shading facilitates the simulation of illustration styles.展开更多
We study theoretically the quantum effects of the littlest Higgs model (LH) mediated by flavor changing one-loop Feynman diagrams on the rare decay process t → cH0. The comparison of the decay width in the LH model w...We study theoretically the quantum effects of the littlest Higgs model (LH) mediated by flavor changing one-loop Feynman diagrams on the rare decay process t → cH0. The comparison of the decay width in the LH model with that in the standard model (SM) is made. We find that the decay branch ratio of t → cH0 in the LH model is at most of the order ~ 10-12, which is two order larger than in the SM. The numerical results show that the difference between the branch ratios in the LH model and the SM is generally sensitive to the LH model parameters, such as symmetry breaking scale f, Higgs boson mass mH0, and x = v'4f /v2 in our chosen parameter space, but relatively insensitive to the value choice of the cosine of the mixing angle c and the ratio λ1/λ2.展开更多
The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parame...The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.展开更多
Segmentation and edge regulation are studied deeply to extract buildings fromDSM data produced in this paper. Building segmentation is the first step to extract buildings, anda new segmentation method-adaptive iterati...Segmentation and edge regulation are studied deeply to extract buildings fromDSM data produced in this paper. Building segmentation is the first step to extract buildings, anda new segmentation method-adaptive iterative segmentation considering rati-o mean square-is proposedto extract the contour of buildings effectively. A sub-image (such as 50X50 pixels) of the image isprocessed in sequence, the average gray level and its ratio mean square are calculated first, thenthreshold of the sub-image is selected by using iterative threshold segmentation. The current pixelis segmented according to the threshold, the average gray level and the ratio mean square of thesub-image. The edge points of the building are grouped according to the azimuth of neighbor points,and then the optimal azimuth of the points that belong to the same group can be calculated by usingline interpolation.展开更多
Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dred...Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.展开更多
A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generat...A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.展开更多
The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image...The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image representation because of its ability to focus on the interesting subsets of an image. In this paper, we develop a new method for gray-scale image representation based on NAM, called NAM-structured plane decomposition (NAMPD), in which each subpattern is associated with a rectangular region in the image. The luminance function of pixels in this region is approximated by an oblique plane model. Then, we propose a new and fast edge detection algorithm based on NAMPD. The theoretical analyses and experimental results presented in this paper show that the edge detection algorithm using NAMPD performs faster than the classical ones because it permits the execution of operations on subpatterns instead of pixels.展开更多
Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a pract...Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.展开更多
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (Nos. 2007AA01Z311 and 2007AA04Z1A5)the Postdoctoral Science Foundation of China (No. 20070421185)the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20060335114)
文摘In this paper we propose a method to model flowers of solid shape. Based on (Ijiri et al., 2005)’s method, we separate individual flower modeling and inflorescence modeling procedures into structure and geometry modeling. We incorporate interactive editing gestures to allow the user to edit structure parameters freely onto structure diagram. Furthermore, we use free-hand sketching techniques to allow users to create and edit 3D geometrical elements freely and easily. The final step is to automatically merge all independent 3D geometrical elements into a single waterproof mesh. Our experiments show that this solid modeling approach is promising. Using our approach, novice users can create vivid flower models easily and freely. The generated flower model is waterproof. It can have applications in visualization, animation, gaming, and toys and decorations if printed out on 3D rapid prototyping devices.
基金Project supported by the National Natural Science Foundation of China (No. 60373032), and the Returnee Foundation of EducationMinistry of China and Zhejiang Province
文摘This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting distribution over primitives. The stylized illustration is simulated by a grid-based method, in which we ‘fill’ the desirable pictorial units into the spatial occupation of CSG primitives, instead of “pixel-by-pixel” painting. This region-by-region shading facilitates the simulation of illustration styles.
文摘We study theoretically the quantum effects of the littlest Higgs model (LH) mediated by flavor changing one-loop Feynman diagrams on the rare decay process t → cH0. The comparison of the decay width in the LH model with that in the standard model (SM) is made. We find that the decay branch ratio of t → cH0 in the LH model is at most of the order ~ 10-12, which is two order larger than in the SM. The numerical results show that the difference between the branch ratios in the LH model and the SM is generally sensitive to the LH model parameters, such as symmetry breaking scale f, Higgs boson mass mH0, and x = v'4f /v2 in our chosen parameter space, but relatively insensitive to the value choice of the cosine of the mixing angle c and the ratio λ1/λ2.
文摘The aim of this paper is to present graphically the behaviour of a simulation model to the varying parameters and to establish the suitability of this representation as a valid tool for the analysis of the same parameters. In this paper, we define parameter combinatorial diagram as the joint graphical representation of all box plots related to the adjustment between real and simulated data, by setting and/or changing the parameters of the simulation model. To do this, we start with a box plot representing the values of an objective adjustment function, achieving these results when varying all the parameters of the simulation model, Then we draw the box plot when setting all the parameters of the model, for example, using the median or average. Later, we get all the box plots when carrying out simulations combining fixed or variable values of the model parameters. Finally, all box plots obtained are represented neatly in a single graph. It is intended that the new parameter combinatorial diagram is used to examine and analyze simulation models useful in practice. This paper presents combinatorial diagrams of different examples of application as in the case of hydrologic models of one, two, three, and five parameters.
基金theNationalNaturalScienceFoundationofChina (No 40 2 0 1 0 35)
文摘Segmentation and edge regulation are studied deeply to extract buildings fromDSM data produced in this paper. Building segmentation is the first step to extract buildings, anda new segmentation method-adaptive iterative segmentation considering rati-o mean square-is proposedto extract the contour of buildings effectively. A sub-image (such as 50X50 pixels) of the image isprocessed in sequence, the average gray level and its ratio mean square are calculated first, thenthreshold of the sub-image is selected by using iterative threshold segmentation. The current pixelis segmented according to the threshold, the average gray level and the ratio mean square of thesub-image. The edge points of the building are grouped according to the azimuth of neighbor points,and then the optimal azimuth of the points that belong to the same group can be calculated by usingline interpolation.
基金Supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China(No. 50879056)National Key Technologies R&D Program in the 12th Five-Year Plan of China(No. 2011BAB10B06)
文摘Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.
基金Supported by the National Natural Science Foundation of China (Nos. 40771176, 40721001)
文摘A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA04Z211)
文摘The nonsymmetry and antipacking pattern representation model (NAM), inspired by the concept of the packing problem, uses a set of subpatterns to represent an original pattern. The NAM is a promising method for image representation because of its ability to focus on the interesting subsets of an image. In this paper, we develop a new method for gray-scale image representation based on NAM, called NAM-structured plane decomposition (NAMPD), in which each subpattern is associated with a rectangular region in the image. The luminance function of pixels in this region is approximated by an oblique plane model. Then, we propose a new and fast edge detection algorithm based on NAMPD. The theoretical analyses and experimental results presented in this paper show that the edge detection algorithm using NAMPD performs faster than the classical ones because it permits the execution of operations on subpatterns instead of pixels.
基金supported by the National Natural Science Foundation of China(No.61202169)the Tianjin Key Natural Science Foundation(No.13JCZDJC34600)+1 种基金the China Scholarship Council(CSC)Foundation(No.201308120010)the Training Plan of Tianjin University Innovation Team(No.TD12-5016)
文摘Three-dimensional(3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance(MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.