Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description fo...Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.展开更多
A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. S...A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
文摘Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.
基金Projects(90820302, 60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education, ChinaProject(2009FJ4030) supported by Academician Foundation of Hunan Province, China
文摘A novel traffic sign recognition system is presented in this work. Firstly, the color segmentation and shape classifier based on signature feature of region are used to detect traffic signs in input video sequences. Secondly, traffic sign color-image is preprocessed with gray scaling, and normalized to 64×64 size. Then, image features could be obtained by four levels DT-CWT images. Thirdly, 2DICA and nearest neighbor classifier are united to recognize traffic signs. The whole recognition algorithm is implemented for classification of 50 categories of traffic signs and its recognition accuracy reaches 90%. Comparing image representation DT-CWT with the well-established image representation like template, Gabor, and 2DICA with feature selection techniques such as PCA, LPP, 2DPCA at the same time, the results show that combination method of DT-CWT and 2DICA is useful in traffic signs recognition. Experimental results indicate that the proposed algorithm is robust, effective and accurate.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.