A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transf...A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.展开更多
Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysi...Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysis can be extremely large is seismic interpretation for hydrocarbon exploration. In order to assist the interpreter in identifying characteristics of interest confined in the seismic data, the authors present a set of data attributes that can be used to train a SOM in such a way that zones of interest can be automatically identified or segmented, reducing time in the interpretation process. The authors show how to associate SOM to 2D color maps to visually identify the clustering structure of the input seismic data, and apply the proposed technique to a 2D synthetic seismic dataset of salt structures.展开更多
Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) ...Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073).
文摘A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.
文摘Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysis can be extremely large is seismic interpretation for hydrocarbon exploration. In order to assist the interpreter in identifying characteristics of interest confined in the seismic data, the authors present a set of data attributes that can be used to train a SOM in such a way that zones of interest can be automatically identified or segmented, reducing time in the interpretation process. The authors show how to associate SOM to 2D color maps to visually identify the clustering structure of the input seismic data, and apply the proposed technique to a 2D synthetic seismic dataset of salt structures.
文摘Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG.