期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于数学形态学粘连粮食籽粒图像分割算法的改进 被引量:9
1
作者 周德祥 毋桂萍 +1 位作者 杨红卫 王自强 《农机化研究》 北大核心 2010年第7期49-52,共4页
为了保障我国的粮食安全,需要特别重视提高粮食生产能力,并为商品粮食的收购以及市场流通提供快速、准确的外观品质检测手段。为此,针对粘连籽粒图像分割时易产生过分割与欠分割的问题,在凌云设计的粮食图像分割算法的基础上,提出了一... 为了保障我国的粮食安全,需要特别重视提高粮食生产能力,并为商品粮食的收购以及市场流通提供快速、准确的外观品质检测手段。为此,针对粘连籽粒图像分割时易产生过分割与欠分割的问题,在凌云设计的粮食图像分割算法的基础上,提出了一种改进的数学形态学方法,并对原算法与改进算法进行对比实验。实验结果表明,改进算法能够较好地解决粘连籽粒的分割问题,特别是籽粒接触面积较小、碎米率较大的图像的分割问题。 展开更多
关键词 图解分割 数学形态学 粘连图像
下载PDF
Unsupervised linear spectral mixture analysis with AVIRIS data
2
作者 谷延锋 杨冬云 张晔 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期471-476,共6页
A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transf... A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation. 展开更多
关键词 spectral mixture analysis minimum noise fraction independent component analysis linear mixture model adaptive subspace decomposition
下载PDF
Self-Organizing Maps in Seismic Image Segmentation
3
作者 Carlos Ramirez Miguel Argaez +1 位作者 Pablo Guiilen Gladys Gonzalez 《Computer Technology and Application》 2012年第9期624-629,共6页
Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysi... Unsupervised neural networks such as the Kohonen Self-Organizing Maps (SOM) have been widely used for searching natural clusters in multidimensional and massive data. One example where the data available for analysis can be extremely large is seismic interpretation for hydrocarbon exploration. In order to assist the interpreter in identifying characteristics of interest confined in the seismic data, the authors present a set of data attributes that can be used to train a SOM in such a way that zones of interest can be automatically identified or segmented, reducing time in the interpretation process. The authors show how to associate SOM to 2D color maps to visually identify the clustering structure of the input seismic data, and apply the proposed technique to a 2D synthetic seismic dataset of salt structures. 展开更多
关键词 Self-organizing maps image segmentation seismic attributes.
下载PDF
Detection and identification of S1 and S2 heart sounds using wavelet decomposition method
4
作者 Ali Tavakoli Golpaygani Nahid Abolpour +1 位作者 Kamran Hassani D. John Doyle 《International Journal of Biomathematics》 2015年第6期141-155,共15页
Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) ... Phonocardiogram (PCG), the digital recording of heart sounds is becoming increasingly popular as a primary detection system for diagnosing heart disorders and it is relatively inexpensive. Electrocardiogram (ECG) is used during the PCG in order to identify the systolic and diastolic parts manually. In this study a heart sound segmentation algorithm has been developed which separates the heart sound signal into these parts automa- tically. This study was carried out on 100 patients with normal and abnormal heart sounds. The algorithm uses discrete wavelet decomposition and reconstruction to pro- duce PCG intensity envelopes and separates that into four parts: the first heart sound, the systolic period, the second heart sound and the diastolic period. The performance of the algorithm has been evaluated using 14,000 cardiac periods from 100 digital PCG recordings, including normal and abnormal heart sounds. In tests, the algorithm was over93% correct in detecting the first and second heart sounds. The presented automatic seg- mentation Mgorithm using w^velet decomposition and reconstruction to select suitable frequency band for envelope calculations has been found to be effective to segment PCG signals into four parts without using an ECG. 展开更多
关键词 PHONOCARDIOGRAPHY AUSCULTATION MURMURS wavelet decomposition waveletreconstruction segmentation.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部