设G是一个n阶图而H是任意一个图.符号G?H表示由G和n个顶点不交的图H通过把G的第i个顶点和第i个H的所有顶点都连一条边所得的图,其中1≤i≤n.设p≥3和q为两个正整数.令Cp和Kp分别表示p个顶点的圈和完全图.证明了Cp?qK_1和Kp?qK_1分别被...设G是一个n阶图而H是任意一个图.符号G?H表示由G和n个顶点不交的图H通过把G的第i个顶点和第i个H的所有顶点都连一条边所得的图,其中1≤i≤n.设p≥3和q为两个正整数.令Cp和Kp分别表示p个顶点的圈和完全图.证明了Cp?qK_1和Kp?qK_1分别被它们的拉普拉斯图谱所确定,且当p为奇数时Cp?qK_1也被它的无符号拉普拉斯图谱所确定.文中的结果推广了[Bu Changjiang, et al.,(2014),Graphs Combin, 30:1123-1133],[Boulet R (2009). Discrete Math Theor Comput Sci, 11:149-160]和[Mirzakhah M, Kiani D (2010). Electron J Linear Algebra, 20:610-620]的相应结论.展开更多
文摘设G是一个n阶图而H是任意一个图.符号G?H表示由G和n个顶点不交的图H通过把G的第i个顶点和第i个H的所有顶点都连一条边所得的图,其中1≤i≤n.设p≥3和q为两个正整数.令Cp和Kp分别表示p个顶点的圈和完全图.证明了Cp?qK_1和Kp?qK_1分别被它们的拉普拉斯图谱所确定,且当p为奇数时Cp?qK_1也被它的无符号拉普拉斯图谱所确定.文中的结果推广了[Bu Changjiang, et al.,(2014),Graphs Combin, 30:1123-1133],[Boulet R (2009). Discrete Math Theor Comput Sci, 11:149-160]和[Mirzakhah M, Kiani D (2010). Electron J Linear Algebra, 20:610-620]的相应结论.